forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_datetimelike.py
1224 lines (964 loc) · 41.2 KB
/
test_datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from typing import Type, Union
import numpy as np
import pytest
import pytz
from pandas._libs import NaT, OutOfBoundsDatetime, Timestamp
from pandas.compat.numpy import np_version_under1p18
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.period import Period, PeriodIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
# TODO: more freq variants
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def freqstr(request):
return request.param
@pytest.fixture
def period_index(freqstr):
"""
A fixture to provide PeriodIndex objects with different frequencies.
Most PeriodArray behavior is already tested in PeriodIndex tests,
so here we just test that the PeriodArray behavior matches
the PeriodIndex behavior.
"""
# TODO: non-monotone indexes; NaTs, different start dates
pi = pd.period_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return pi
@pytest.fixture
def datetime_index(freqstr):
"""
A fixture to provide DatetimeIndex objects with different frequencies.
Most DatetimeArray behavior is already tested in DatetimeIndex tests,
so here we just test that the DatetimeArray behavior matches
the DatetimeIndex behavior.
"""
# TODO: non-monotone indexes; NaTs, different start dates, timezones
dti = pd.date_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return dti
@pytest.fixture
def timedelta_index():
"""
A fixture to provide TimedeltaIndex objects with different frequencies.
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
so here we just test that the TimedeltaArray behavior matches
the TimedeltaIndex behavior.
"""
# TODO: flesh this out
return pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
class SharedTests:
index_cls: Type[Union[DatetimeIndex, PeriodIndex, TimedeltaIndex]]
@pytest.fixture
def arr1d(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
return arr
def test_compare_len1_raises(self):
# make sure we raise when comparing with different lengths, specific
# to the case where one has length-1, which numpy would broadcast
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls(arr)
with pytest.raises(ValueError, match="Lengths must match"):
arr == arr[:1]
# test the index classes while we're at it, GH#23078
with pytest.raises(ValueError, match="Lengths must match"):
idx <= idx[[0]]
@pytest.mark.parametrize("reverse", [True, False])
@pytest.mark.parametrize("as_index", [True, False])
def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
other = pd.Categorical(arr1d, ordered=ordered)
if as_index:
other = pd.CategoricalIndex(other)
left, right = arr1d, other
if reverse:
left, right = right, left
ones = np.ones(arr1d.shape, dtype=bool)
zeros = ~ones
result = left == right
tm.assert_numpy_array_equal(result, ones)
result = left != right
tm.assert_numpy_array_equal(result, zeros)
if not reverse and not as_index:
# Otherwise Categorical raises TypeError bc it is not ordered
# TODO: we should probably get the same behavior regardless?
result = left < right
tm.assert_numpy_array_equal(result, zeros)
result = left <= right
tm.assert_numpy_array_equal(result, ones)
result = left > right
tm.assert_numpy_array_equal(result, zeros)
result = left >= right
tm.assert_numpy_array_equal(result, ones)
def test_take(self):
data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9
np.random.shuffle(data)
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls._simple_new(arr)
takers = [1, 4, 94]
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
takers = np.array([1, 4, 94])
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
@pytest.mark.parametrize("fill_value", [2, 2.0, pd.Timestamp.now().time])
def test_take_fill_raises(self, fill_value):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
msg = f"'fill_value' should be a {self.dtype}. Got '{fill_value}'"
with pytest.raises(ValueError, match=msg):
arr.take([0, 1], allow_fill=True, fill_value=fill_value)
def test_take_fill(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT)
assert result[0] is pd.NaT
def test_take_fill_str(self, arr1d):
# Cast str fill_value matching other fill_value-taking methods
result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1]))
expected = arr1d[[-1, 1]]
tm.assert_equal(result, expected)
msg = r"'fill_value' should be a <.*>\. Got 'foo'"
with pytest.raises(ValueError, match=msg):
arr1d.take([-1, 1], allow_fill=True, fill_value="foo")
def test_concat_same_type(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls(arr)
idx = idx.insert(0, pd.NaT)
arr = self.array_cls(idx)
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
arr2 = arr.astype(object)
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None)
tm.assert_index_equal(self.index_cls(result), expected)
def test_unbox_scalar(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._unbox_scalar(arr[0])
expected = arr._data.dtype.type
assert isinstance(result, expected)
result = arr._unbox_scalar(pd.NaT)
assert isinstance(result, expected)
msg = f"'value' should be a {self.dtype.__name__}."
with pytest.raises(ValueError, match=msg):
arr._unbox_scalar("foo")
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr._check_compatible_with(arr[0])
arr._check_compatible_with(arr[:1])
arr._check_compatible_with(pd.NaT)
def test_scalar_from_string(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._scalar_from_string(str(arr[0]))
assert result == arr[0]
def test_reduce_invalid(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
msg = f"'{type(arr).__name__}' does not implement reduction 'not a method'"
with pytest.raises(TypeError, match=msg):
arr._reduce("not a method")
@pytest.mark.parametrize("method", ["pad", "backfill"])
def test_fillna_method_doesnt_change_orig(self, method):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[4] = pd.NaT
fill_value = arr[3] if method == "pad" else arr[5]
result = arr.fillna(method=method)
assert result[4] == fill_value
# check that the original was not changed
assert arr[4] is pd.NaT
def test_searchsorted(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
# scalar
result = arr.searchsorted(arr[1])
assert result == 1
result = arr.searchsorted(arr[2], side="right")
assert result == 3
# own-type
result = arr.searchsorted(arr[1:3])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
result = arr.searchsorted(arr[1:3], side="right")
expected = np.array([2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# GH#29884 match numpy convention on whether NaT goes
# at the end or the beginning
result = arr.searchsorted(pd.NaT)
if np_version_under1p18:
# Following numpy convention, NaT goes at the beginning
# (unlike NaN which goes at the end)
assert result == 0
else:
assert result == 10
@pytest.mark.parametrize("box", [None, "index", "series"])
def test_searchsorted_castable_strings(self, arr1d, box):
if isinstance(arr1d, DatetimeArray):
tz = arr1d.tz
if (
tz is not None
and tz is not pytz.UTC
and not isinstance(tz, pytz._FixedOffset)
):
# If we have e.g. tzutc(), when we cast to string and parse
# back we get pytz.UTC, and then consider them different timezones
# so incorrectly raise.
pytest.xfail(reason="timezone comparisons inconsistent")
arr = arr1d
if box is None:
pass
elif box == "index":
# Test the equivalent Index.searchsorted method while we're here
arr = self.index_cls(arr)
else:
# Test the equivalent Series.searchsorted method while we're here
arr = pd.Series(arr)
# scalar
result = arr.searchsorted(str(arr[1]))
assert result == 1
result = arr.searchsorted(str(arr[2]), side="right")
assert result == 3
result = arr.searchsorted([str(x) for x in arr[1:3]])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
with pytest.raises(TypeError):
arr.searchsorted("foo")
with pytest.raises(TypeError):
arr.searchsorted([str(arr[1]), "baz"])
def test_getitem_2d(self, arr1d):
# 2d slicing on a 1D array
expected = type(arr1d)(arr1d._data[:, np.newaxis], dtype=arr1d.dtype)
result = arr1d[:, np.newaxis]
tm.assert_equal(result, expected)
# Lookup on a 2D array
arr2d = expected
expected = type(arr2d)(arr2d._data[:3, 0], dtype=arr2d.dtype)
result = arr2d[:3, 0]
tm.assert_equal(result, expected)
# Scalar lookup
result = arr2d[-1, 0]
expected = arr1d[-1]
assert result == expected
def test_iter_2d(self, arr1d):
data2d = arr1d._data[:3, np.newaxis]
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
result = list(arr2d)
assert len(result) == 3
for x in result:
assert isinstance(x, type(arr1d))
assert x.ndim == 1
assert x.dtype == arr1d.dtype
def test_repr_2d(self, arr1d):
data2d = arr1d._data[:3, np.newaxis]
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
result = repr(arr2d)
if isinstance(arr2d, TimedeltaArray):
expected = (
f"<{type(arr2d).__name__}>\n"
"[\n"
f"['{arr1d[0]._repr_base()}'],\n"
f"['{arr1d[1]._repr_base()}'],\n"
f"['{arr1d[2]._repr_base()}']\n"
"]\n"
f"Shape: (3, 1), dtype: {arr1d.dtype}"
)
else:
expected = (
f"<{type(arr2d).__name__}>\n"
"[\n"
f"['{arr1d[0]}'],\n"
f"['{arr1d[1]}'],\n"
f"['{arr1d[2]}']\n"
"]\n"
f"Shape: (3, 1), dtype: {arr1d.dtype}"
)
assert result == expected
def test_setitem(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[0] = arr[1]
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
expected[0] = expected[1]
tm.assert_numpy_array_equal(arr.asi8, expected)
arr[:2] = arr[-2:]
expected[:2] = expected[-2:]
tm.assert_numpy_array_equal(arr.asi8, expected)
def test_setitem_strs(self, arr1d):
# Check that we parse strs in both scalar and listlike
if isinstance(arr1d, DatetimeArray):
tz = arr1d.tz
if (
tz is not None
and tz is not pytz.UTC
and not isinstance(tz, pytz._FixedOffset)
):
# If we have e.g. tzutc(), when we cast to string and parse
# back we get pytz.UTC, and then consider them different timezones
# so incorrectly raise.
pytest.xfail(reason="timezone comparisons inconsistent")
# Setting list-like of strs
expected = arr1d.copy()
expected[[0, 1]] = arr1d[-2:]
result = arr1d.copy()
result[:2] = [str(x) for x in arr1d[-2:]]
tm.assert_equal(result, expected)
# Same thing but now for just a scalar str
expected = arr1d.copy()
expected[0] = arr1d[-1]
result = arr1d.copy()
result[0] = str(arr1d[-1])
tm.assert_equal(result, expected)
@pytest.mark.parametrize("as_index", [True, False])
def test_setitem_categorical(self, arr1d, as_index):
expected = arr1d.copy()[::-1]
if not isinstance(expected, PeriodArray):
expected = expected._with_freq(None)
cat = pd.Categorical(arr1d)
if as_index:
cat = pd.CategoricalIndex(cat)
arr1d[:] = cat[::-1]
tm.assert_equal(arr1d, expected)
def test_setitem_raises(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
val = arr[0]
with pytest.raises(IndexError, match="index 12 is out of bounds"):
arr[12] = val
with pytest.raises(TypeError, match="value should be a.* 'object'"):
arr[0] = object()
msg = "cannot set using a list-like indexer with a different length"
with pytest.raises(ValueError, match=msg):
# GH#36339
arr[[]] = [arr[1]]
msg = "cannot set using a slice indexer with a different length than"
with pytest.raises(ValueError, match=msg):
# GH#36339
arr[1:1] = arr[:3]
@pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
def test_setitem_numeric_raises(self, arr1d, box):
# We dont case e.g. int64 to our own dtype for setitem
msg = (
f"value should be a '{arr1d._scalar_type.__name__}', "
"'NaT', or array of those. Got"
)
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0, 1])
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0.0, 1.0])
def test_inplace_arithmetic(self):
# GH#24115 check that iadd and isub are actually in-place
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
expected = arr + pd.Timedelta(days=1)
arr += pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
expected = arr - pd.Timedelta(days=1)
arr -= pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
def test_shift_fill_int_deprecated(self):
# GH#31971
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = arr.shift(1, fill_value=1)
expected = arr.copy()
if self.array_cls is PeriodArray:
fill_val = PeriodArray._scalar_type._from_ordinal(1, freq=arr.freq)
else:
fill_val = arr._scalar_type(1)
expected[0] = fill_val
expected[1:] = arr[:-1]
tm.assert_equal(result, expected)
def test_median(self, arr1d):
arr = arr1d
if len(arr) % 2 == 0:
# make it easier to define `expected`
arr = arr[:-1]
expected = arr[len(arr) // 2]
result = arr.median()
assert type(result) is type(expected)
assert result == expected
arr[len(arr) // 2] = NaT
if not isinstance(expected, Period):
expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean()
assert arr.median(skipna=False) is NaT
result = arr.median()
assert type(result) is type(expected)
assert result == expected
assert arr[:0].median() is NaT
assert arr[:0].median(skipna=False) is NaT
# 2d Case
arr2 = arr.reshape(-1, 1)
result = arr2.median(axis=None)
assert type(result) is type(expected)
assert result == expected
assert arr2.median(axis=None, skipna=False) is NaT
result = arr2.median(axis=0)
expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype)
tm.assert_equal(result, expected2)
result = arr2.median(axis=0, skipna=False)
expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype)
tm.assert_equal(result, expected2)
result = arr2.median(axis=1)
tm.assert_equal(result, arr)
result = arr2.median(axis=1, skipna=False)
tm.assert_equal(result, arr)
class TestDatetimeArray(SharedTests):
index_cls = pd.DatetimeIndex
array_cls = DatetimeArray
dtype = pd.Timestamp
@pytest.fixture
def arr1d(self, tz_naive_fixture, freqstr):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz)
dta = dti._data
return dta
def test_round(self, arr1d):
# GH#24064
dti = self.index_cls(arr1d)
result = dti.round(freq="2T")
expected = dti - pd.Timedelta(minutes=1)
expected = expected._with_freq(None)
tm.assert_index_equal(result, expected)
dta = dti._data
result = dta.round(freq="2T")
expected = expected._data._with_freq(None)
tm.assert_datetime_array_equal(result, expected)
def test_array_interface(self, datetime_index):
arr = DatetimeArray(datetime_index)
# default asarray gives the same underlying data (for tz naive)
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying M8[ns] gives the same result as default
result = np.asarray(arr, dtype="datetime64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_object_dtype(self, arr1d):
# GH#23524
arr = arr1d
dti = self.index_cls(arr1d)
expected = np.array(list(dti))
result = np.array(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
# also test the DatetimeIndex method while we're at it
result = np.array(dti, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_array_tz(self, arr1d):
# GH#23524
arr = arr1d
dti = self.index_cls(arr1d)
expected = dti.asi8.view("M8[ns]")
result = np.array(arr, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# check that we are not making copies when setting copy=False
result = np.array(arr, dtype="M8[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
def test_array_i8_dtype(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
expected = dti.asi8
result = np.array(arr, dtype="i8")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
# check that we are still making copies when setting copy=False
result = np.array(arr, dtype="i8", copy=False)
assert result.base is not expected.base
assert result.base is None
def test_from_array_keeps_base(self):
# Ensure that DatetimeArray._data.base isn't lost.
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
dta = DatetimeArray(arr)
assert dta._data is arr
dta = DatetimeArray(arr[:0])
assert dta._data.base is arr
def test_from_dti(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
assert list(dti) == list(arr)
# Check that Index.__new__ knows what to do with DatetimeArray
dti2 = pd.Index(arr)
assert isinstance(dti2, pd.DatetimeIndex)
assert list(dti2) == list(arr)
def test_astype_object(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(dti)
def test_to_perioddelta(self, datetime_index, freqstr):
# GH#23113
dti = datetime_index
arr = DatetimeArray(dti)
with tm.assert_produces_warning(FutureWarning):
# Deprecation GH#34853
expected = dti.to_perioddelta(freq=freqstr)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# stacklevel is chosen to be "correct" for DatetimeIndex, not
# DatetimeArray
result = arr.to_perioddelta(freq=freqstr)
assert isinstance(result, TimedeltaArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
def test_to_period(self, datetime_index, freqstr):
dti = datetime_index
arr = DatetimeArray(dti)
expected = dti.to_period(freq=freqstr)
result = arr.to_period(freq=freqstr)
assert isinstance(result, PeriodArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("propname", pd.DatetimeIndex._bool_ops)
def test_bool_properties(self, arr1d, propname):
# in this case _bool_ops is just `is_leap_year`
dti = self.index_cls(arr1d)
arr = arr1d
assert dti.freq == arr.freq
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", pd.DatetimeIndex._field_ops)
def test_int_properties(self, arr1d, propname):
if propname in ["week", "weekofyear"]:
# GH#33595 Deprecate week and weekofyear
return
dti = self.index_cls(arr1d)
arr = arr1d
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, arr1d):
arr = arr1d
dti = self.index_cls(arr1d)
now = pd.Timestamp.now().tz_localize(dti.tz)
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
assert result[0] == now
msg = f"'fill_value' should be a {self.dtype}. Got '0 days 00:00:00'."
with pytest.raises(ValueError, match=msg):
# fill_value Timedelta invalid
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
msg = f"'fill_value' should be a {self.dtype}. Got '2014Q1'."
with pytest.raises(ValueError, match=msg):
# fill_value Period invalid
arr.take([-1, 1], allow_fill=True, fill_value=pd.Period("2014Q1"))
tz = None if dti.tz is not None else "US/Eastern"
now = pd.Timestamp.now().tz_localize(tz)
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
with pytest.raises(TypeError, match=msg):
# Timestamp with mismatched tz-awareness
arr.take([-1, 1], allow_fill=True, fill_value=now)
value = pd.NaT.value
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
if arr.tz is not None:
# GH#37356
# Assuming here that arr1d fixture does not include Australia/Melbourne
value = Timestamp.now().tz_localize("Australia/Melbourne")
msg = "Timezones don't match. .* != 'Australia/Melbourne'"
with pytest.raises(ValueError, match=msg):
# require tz match, not just tzawareness match
arr.take([-1, 1], allow_fill=True, fill_value=value)
def test_concat_same_type_invalid(self, arr1d):
# different timezones
arr = arr1d
if arr.tz is None:
other = arr.tz_localize("UTC")
else:
other = arr.tz_localize(None)
with pytest.raises(ValueError, match="to_concat must have the same"):
arr._concat_same_type([arr, other])
def test_concat_same_type_different_freq(self):
# we *can* concatenate DTI with different freqs.
a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central"))
result = DatetimeArray._concat_same_type([a, b])
expected = DatetimeArray(
pd.to_datetime(
[
"2000-01-01 00:00:00",
"2000-01-02 00:00:00",
"2000-01-01 00:00:00",
"2000-01-01 01:00:00",
]
).tz_localize("US/Central")
)
tm.assert_datetime_array_equal(result, expected)
def test_strftime(self, arr1d):
arr = arr1d
result = arr.strftime("%Y %b")
expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_strftime_nat(self):
# GH 29578
arr = DatetimeArray(DatetimeIndex(["2019-01-01", pd.NaT]))
result = arr.strftime("%Y-%m-%d")
expected = np.array(["2019-01-01", np.nan], dtype=object)
tm.assert_numpy_array_equal(result, expected)
class TestTimedeltaArray(SharedTests):
index_cls = pd.TimedeltaIndex
array_cls = TimedeltaArray
dtype = pd.Timedelta
def test_from_tdi(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
assert list(arr) == list(tdi)
# Check that Index.__new__ knows what to do with TimedeltaArray
tdi2 = pd.Index(arr)
assert isinstance(tdi2, pd.TimedeltaIndex)
assert list(tdi2) == list(arr)
def test_astype_object(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(tdi)
def test_to_pytimedelta(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.to_pytimedelta()
result = arr.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.total_seconds()
result = arr.total_seconds()
tm.assert_numpy_array_equal(result, expected.values)
@pytest.mark.parametrize("propname", pd.TimedeltaIndex._field_ops)
def test_int_properties(self, timedelta_index, propname):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
result = getattr(arr, propname)
expected = np.array(getattr(tdi, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, timedelta_index):
arr = TimedeltaArray(timedelta_index)
# default asarray gives the same underlying data
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying m8[ns] gives the same result as default
result = np.asarray(arr, dtype="timedelta64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
td1 = pd.Timedelta(days=1)
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
assert result[0] == td1
now = pd.Timestamp.now()
value = now
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# fill_value Timestamp invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = now.to_period("D")
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# fill_value Period invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = np.datetime64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
class TestPeriodArray(SharedTests):
index_cls = pd.PeriodIndex
array_cls = PeriodArray
dtype = pd.Period
@pytest.fixture
def arr1d(self, period_index):
return period_index._data
def test_from_pi(self, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
assert list(arr) == list(pi)
# Check that Index.__new__ knows what to do with PeriodArray
pi2 = pd.Index(arr)
assert isinstance(pi2, pd.PeriodIndex)
assert list(pi2) == list(arr)
def test_astype_object(self, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(pi)
def test_take_fill_valid(self, arr1d):
arr = arr1d
value = pd.NaT.value
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
@pytest.mark.parametrize("how", ["S", "E"])
def test_to_timestamp(self, how, arr1d):
pi = self.index_cls(arr1d)
arr = arr1d
expected = DatetimeArray(pi.to_timestamp(how=how))