forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_datetimelike.py
689 lines (531 loc) · 23.6 KB
/
test_datetimelike.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import numpy as np
import pytest
import pandas as pd
from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
import pandas.util.testing as tm
# TODO: more freq variants
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def period_index(request):
"""
A fixture to provide PeriodIndex objects with different frequencies.
Most PeriodArray behavior is already tested in PeriodIndex tests,
so here we just test that the PeriodArray behavior matches
the PeriodIndex behavior.
"""
freqstr = request.param
# TODO: non-monotone indexes; NaTs, different start dates
pi = pd.period_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return pi
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def datetime_index(request):
"""
A fixture to provide DatetimeIndex objects with different frequencies.
Most DatetimeArray behavior is already tested in DatetimeIndex tests,
so here we just test that the DatetimeArray behavior matches
the DatetimeIndex behavior.
"""
freqstr = request.param
# TODO: non-monotone indexes; NaTs, different start dates, timezones
pi = pd.date_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return pi
@pytest.fixture
def timedelta_index(request):
"""
A fixture to provide TimedeltaIndex objects with different frequencies.
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
so here we just test that the TimedeltaArray behavior matches
the TimedeltaIndex behavior.
"""
# TODO: flesh this out
return pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
class SharedTests:
index_cls = None
def test_compare_len1_raises(self):
# make sure we raise when comparing with different lengths, specific
# to the case where one has length-1, which numpy would broadcast
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
idx = self.index_cls._simple_new(data, freq="D")
arr = self.array_cls(idx)
with pytest.raises(ValueError, match="Lengths must match"):
arr == arr[:1]
# test the index classes while we're at it, GH#23078
with pytest.raises(ValueError, match="Lengths must match"):
idx <= idx[[0]]
def test_take(self):
data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9
np.random.shuffle(data)
idx = self.index_cls._simple_new(data, freq="D")
arr = self.array_cls(idx)
takers = [1, 4, 94]
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
takers = np.array([1, 4, 94])
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
def test_take_fill(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
idx = self.index_cls._simple_new(data, freq="D")
arr = self.array_cls(idx)
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT)
assert result[0] is pd.NaT
with pytest.raises(ValueError):
arr.take([0, 1], allow_fill=True, fill_value=2)
with pytest.raises(ValueError):
arr.take([0, 1], allow_fill=True, fill_value=2.0)
with pytest.raises(ValueError):
arr.take([0, 1], allow_fill=True, fill_value=pd.Timestamp.now().time)
def test_concat_same_type(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
idx = self.index_cls._simple_new(data, freq="D").insert(0, pd.NaT)
arr = self.array_cls(idx)
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
expected = idx._concat_same_dtype([idx[:-1], idx[1:], idx], None)
tm.assert_index_equal(self.index_cls(result), expected)
def test_unbox_scalar(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._unbox_scalar(arr[0])
assert isinstance(result, int)
result = arr._unbox_scalar(pd.NaT)
assert isinstance(result, int)
with pytest.raises(ValueError):
arr._unbox_scalar("foo")
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr._check_compatible_with(arr[0])
arr._check_compatible_with(arr[:1])
arr._check_compatible_with(pd.NaT)
def test_scalar_from_string(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._scalar_from_string(str(arr[0]))
assert result == arr[0]
def test_reduce_invalid(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
with pytest.raises(TypeError, match="cannot perform"):
arr._reduce("not a method")
@pytest.mark.parametrize("method", ["pad", "backfill"])
def test_fillna_method_doesnt_change_orig(self, method):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[4] = pd.NaT
fill_value = arr[3] if method == "pad" else arr[5]
result = arr.fillna(method=method)
assert result[4] == fill_value
# check that the original was not changed
assert arr[4] is pd.NaT
def test_searchsorted(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
# scalar
result = arr.searchsorted(arr[1])
assert result == 1
result = arr.searchsorted(arr[2], side="right")
assert result == 3
# own-type
result = arr.searchsorted(arr[1:3])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
result = arr.searchsorted(arr[1:3], side="right")
expected = np.array([2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# Following numpy convention, NaT goes at the beginning
# (unlike NaN which goes at the end)
result = arr.searchsorted(pd.NaT)
assert result == 0
def test_setitem(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[0] = arr[1]
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
expected[0] = expected[1]
tm.assert_numpy_array_equal(arr.asi8, expected)
arr[:2] = arr[-2:]
expected[:2] = expected[-2:]
tm.assert_numpy_array_equal(arr.asi8, expected)
def test_setitem_raises(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
val = arr[0]
with pytest.raises(IndexError, match="index 12 is out of bounds"):
arr[12] = val
with pytest.raises(TypeError, match="'value' should be a.* 'object'"):
arr[0] = object()
class TestDatetimeArray(SharedTests):
index_cls = pd.DatetimeIndex
array_cls = DatetimeArray
def test_round(self, tz_naive_fixture):
# GH#24064
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz)
result = dti.round(freq="2T")
expected = dti - pd.Timedelta(minutes=1)
tm.assert_index_equal(result, expected)
def test_array_interface(self, datetime_index):
arr = DatetimeArray(datetime_index)
# default asarray gives the same underlying data (for tz naive)
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying M8[ns] gives the same result as default
result = np.asarray(arr, dtype="datetime64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_object_dtype(self, tz_naive_fixture):
# GH#23524
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = np.array(list(dti))
result = np.array(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
# also test the DatetimeIndex method while we're at it
result = np.array(dti, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_array_tz(self, tz_naive_fixture):
# GH#23524
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = dti.asi8.view("M8[ns]")
result = np.array(arr, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# check that we are not making copies when setting copy=False
result = np.array(arr, dtype="M8[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
def test_array_i8_dtype(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = dti.asi8
result = np.array(arr, dtype="i8")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
# check that we are still making copies when setting copy=False
result = np.array(arr, dtype="i8", copy=False)
assert result.base is not expected.base
assert result.base is None
def test_from_array_keeps_base(self):
# Ensure that DatetimeArray._data.base isn't lost.
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
dta = DatetimeArray(arr)
assert dta._data is arr
dta = DatetimeArray(arr[:0])
assert dta._data.base is arr
def test_from_dti(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
assert list(dti) == list(arr)
# Check that Index.__new__ knows what to do with DatetimeArray
dti2 = pd.Index(arr)
assert isinstance(dti2, pd.DatetimeIndex)
assert list(dti2) == list(arr)
def test_astype_object(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(dti)
@pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
def test_to_perioddelta(self, datetime_index, freqstr):
# GH#23113
dti = datetime_index
arr = DatetimeArray(dti)
expected = dti.to_perioddelta(freq=freqstr)
result = arr.to_perioddelta(freq=freqstr)
assert isinstance(result, TimedeltaArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
def test_to_period(self, datetime_index, freqstr):
dti = datetime_index
arr = DatetimeArray(dti)
expected = dti.to_period(freq=freqstr)
result = arr.to_period(freq=freqstr)
assert isinstance(result, PeriodArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("propname", pd.DatetimeIndex._bool_ops)
def test_bool_properties(self, datetime_index, propname):
# in this case _bool_ops is just `is_leap_year`
dti = datetime_index
arr = DatetimeArray(dti)
assert dti.freq == arr.freq
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", pd.DatetimeIndex._field_ops)
def test_int_properties(self, datetime_index, propname):
dti = datetime_index
arr = DatetimeArray(dti)
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, datetime_index, tz_naive_fixture):
dti = datetime_index.tz_localize(tz_naive_fixture)
arr = DatetimeArray(dti)
now = pd.Timestamp.now().tz_localize(dti.tz)
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
assert result[0] == now
with pytest.raises(ValueError):
# fill_value Timedelta invalid
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
with pytest.raises(ValueError):
# fill_value Period invalid
arr.take([-1, 1], allow_fill=True, fill_value=pd.Period("2014Q1"))
tz = None if dti.tz is not None else "US/Eastern"
now = pd.Timestamp.now().tz_localize(tz)
with pytest.raises(TypeError):
# Timestamp with mismatched tz-awareness
arr.take([-1, 1], allow_fill=True, fill_value=now)
with pytest.raises(ValueError):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT.value)
def test_concat_same_type_invalid(self, datetime_index):
# different timezones
dti = datetime_index
arr = DatetimeArray(dti)
if arr.tz is None:
other = arr.tz_localize("UTC")
else:
other = arr.tz_localize(None)
with pytest.raises(AssertionError):
arr._concat_same_type([arr, other])
def test_concat_same_type_different_freq(self):
# we *can* concatenate DTI with different freqs.
a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central"))
result = DatetimeArray._concat_same_type([a, b])
expected = DatetimeArray(
pd.to_datetime(
[
"2000-01-01 00:00:00",
"2000-01-02 00:00:00",
"2000-01-01 00:00:00",
"2000-01-01 01:00:00",
]
).tz_localize("US/Central")
)
tm.assert_datetime_array_equal(result, expected)
class TestTimedeltaArray(SharedTests):
index_cls = pd.TimedeltaIndex
array_cls = TimedeltaArray
def test_from_tdi(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
assert list(arr) == list(tdi)
# Check that Index.__new__ knows what to do with TimedeltaArray
tdi2 = pd.Index(arr)
assert isinstance(tdi2, pd.TimedeltaIndex)
assert list(tdi2) == list(arr)
def test_astype_object(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(tdi)
def test_to_pytimedelta(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.to_pytimedelta()
result = arr.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.total_seconds()
result = arr.total_seconds()
tm.assert_numpy_array_equal(result, expected.values)
@pytest.mark.parametrize("propname", pd.TimedeltaIndex._field_ops)
def test_int_properties(self, timedelta_index, propname):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
result = getattr(arr, propname)
expected = np.array(getattr(tdi, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, timedelta_index):
arr = TimedeltaArray(timedelta_index)
# default asarray gives the same underlying data
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying m8[ns] gives the same result as default
result = np.asarray(arr, dtype="timedelta64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
td1 = pd.Timedelta(days=1)
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
assert result[0] == td1
now = pd.Timestamp.now()
with pytest.raises(ValueError):
# fill_value Timestamp invalid
arr.take([0, 1], allow_fill=True, fill_value=now)
with pytest.raises(ValueError):
# fill_value Period invalid
arr.take([0, 1], allow_fill=True, fill_value=now.to_period("D"))
class TestPeriodArray(SharedTests):
index_cls = pd.PeriodIndex
array_cls = PeriodArray
def test_from_pi(self, period_index):
pi = period_index
arr = PeriodArray(pi)
assert list(arr) == list(pi)
# Check that Index.__new__ knows what to do with PeriodArray
pi2 = pd.Index(arr)
assert isinstance(pi2, pd.PeriodIndex)
assert list(pi2) == list(arr)
def test_astype_object(self, period_index):
pi = period_index
arr = PeriodArray(pi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(pi)
@pytest.mark.parametrize("how", ["S", "E"])
def test_to_timestamp(self, how, period_index):
pi = period_index
arr = PeriodArray(pi)
expected = DatetimeArray(pi.to_timestamp(how=how))
result = arr.to_timestamp(how=how)
assert isinstance(result, DatetimeArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("propname", PeriodArray._bool_ops)
def test_bool_properties(self, period_index, propname):
# in this case _bool_ops is just `is_leap_year`
pi = period_index
arr = PeriodArray(pi)
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", PeriodArray._field_ops)
def test_int_properties(self, period_index, propname):
pi = period_index
arr = PeriodArray(pi)
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, period_index):
arr = PeriodArray(period_index)
# default asarray gives objects
result = np.asarray(arr)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to object dtype (same as default)
result = np.asarray(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtypes
with pytest.raises(TypeError):
np.asarray(arr, dtype="int64")
with pytest.raises(TypeError):
np.asarray(arr, dtype="float64")
result = np.asarray(arr, dtype="S20")
expected = np.asarray(arr).astype("S20")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"array",
[
pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
pd.date_range("2000-01-01", periods=3, freq="D")._data,
pd.period_range("2000-01-01", periods=3, freq="D")._data,
],
ids=lambda x: type(x).__name__,
)
def test_nat_assignment_array(array):
expected = type(array)._from_sequence([pd.NaT, array[1], array[2]])
all_nats = [pd.NaT, np.timedelta64("NaT", "ns"), np.datetime64("NaT", "ns")]
casting_nats = {
TimedeltaArray: [pd.NaT, np.timedelta64("NaT", "ns")],
DatetimeArray: [pd.NaT, np.datetime64("NaT", "ns")],
PeriodArray: [pd.NaT],
}[type(array)]
non_casting_nats = {
TimedeltaArray: [np.datetime64("NaT", "ns")],
DatetimeArray: [np.timedelta64("NaT", "ns")],
PeriodArray: [np.timedelta64("NaT", "ns"), np.datetime64("NaT", "ns")],
}[type(array)]
for nat in casting_nats:
arr = array.copy()
arr[0] = nat
tm.assert_equal(arr, expected)
for nat in non_casting_nats:
arr = array.copy()
with pytest.raises(TypeError):
arr[0] = nat