.. currentmodule:: pandas
.. ipython:: python :suppress: import datetime import numpy as np import pandas as pd np.random.seed(123456) randn = np.random.randn randint = np.random.randint np.set_printoptions(precision=4, suppress=True) pd.options.display.max_rows=15 import dateutil import pytz from dateutil.relativedelta import relativedelta from pandas.tseries.offsets import *
Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be both positive and negative.
Timedelta
is a subclass of datetime.timedelta
, and behaves in a similar manner,
but allows compatibility with np.timedelta64
types as well as a host of custom representation,
parsing, and attributes.
You can construct a Timedelta
scalar through various arguments:
.. ipython:: python # strings pd.Timedelta('1 days') pd.Timedelta('1 days 00:00:00') pd.Timedelta('1 days 2 hours') pd.Timedelta('-1 days 2 min 3us') # like datetime.timedelta # note: these MUST be specified as keyword arguments pd.Timedelta(days=1, seconds=1) # integers with a unit pd.Timedelta(1, unit='d') # from a datetime.timedelta/np.timedelta64 pd.Timedelta(datetime.timedelta(days=1, seconds=1)) pd.Timedelta(np.timedelta64(1, 'ms')) # negative Timedeltas have this string repr # to be more consistent with datetime.timedelta conventions pd.Timedelta('-1us') # a NaT pd.Timedelta('nan') pd.Timedelta('nat')
:ref:`DateOffsets<timeseries.offsets>` (Day, Hour, Minute, Second, Milli, Micro, Nano
) can also be used in construction.
.. ipython:: python pd.Timedelta(Second(2))
Further, operations among the scalars yield another scalar Timedelta
.
.. ipython:: python pd.Timedelta(Day(2)) + pd.Timedelta(Second(2)) + pd.Timedelta('00:00:00.000123')
Using the top-level pd.to_timedelta
, you can convert a scalar, array, list,
or Series from a recognized timedelta format / value into a Timedelta
type.
It will construct Series if the input is a Series, a scalar if the input is
scalar-like, otherwise it will output a TimedeltaIndex
.
You can parse a single string to a Timedelta:
.. ipython:: python pd.to_timedelta('1 days 06:05:01.00003') pd.to_timedelta('15.5us')
or a list/array of strings:
.. ipython:: python pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
The unit
keyword argument specifies the unit of the Timedelta:
.. ipython:: python pd.to_timedelta(np.arange(5), unit='s') pd.to_timedelta(np.arange(5), unit='d')
Pandas represents Timedeltas
in nanosecond resolution using
64 bit integers. As such, the 64 bit integer limits determine
the Timedelta
limits.
.. ipython:: python pd.Timedelta.min pd.Timedelta.max
You can operate on Series/DataFrames and construct timedelta64[ns]
Series through
subtraction operations on datetime64[ns]
Series, or Timestamps
.
.. ipython:: python s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D')) td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ]) df = pd.DataFrame(dict(A = s, B = td)) df df['C'] = df['A'] + df['B'] df df.dtypes s - s.max() s - datetime.datetime(2011, 1, 1, 3, 5) s + datetime.timedelta(minutes=5) s + Minute(5) s + Minute(5) + Milli(5)
Operations with scalars from a timedelta64[ns]
series:
.. ipython:: python y = s - s[0] y
Series of timedeltas with NaT
values are supported:
.. ipython:: python y = s - s.shift() y
Elements can be set to NaT
using np.nan
analogously to datetimes:
.. ipython:: python y[1] = np.nan y
Operands can also appear in a reversed order (a singular object operated with a Series):
.. ipython:: python s.max() - s datetime.datetime(2011, 1, 1, 3, 5) - s datetime.timedelta(minutes=5) + s
min, max
and the corresponding idxmin, idxmax
operations are supported on frames:
.. ipython:: python A = s - pd.Timestamp('20120101') - pd.Timedelta('00:05:05') B = s - pd.Series(pd.date_range('2012-1-2', periods=3, freq='D')) df = pd.DataFrame(dict(A=A, B=B)) df df.min() df.min(axis=1) df.idxmin() df.idxmax()
min, max, idxmin, idxmax
operations are supported on Series as well. A scalar result will be a Timedelta
.
.. ipython:: python df.min().max() df.min(axis=1).min() df.min().idxmax() df.min(axis=1).idxmin()
You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.
.. ipython:: python y.fillna(0) y.fillna(10) y.fillna(pd.Timedelta('-1 days, 00:00:05'))
You can also negate, multiply and use abs
on Timedeltas
:
.. ipython:: python td1 = pd.Timedelta('-1 days 2 hours 3 seconds') td1 -1 * td1 - td1 abs(td1)
Numeric reduction operation for timedelta64[ns]
will return Timedelta
objects. As usual
NaT
are skipped during evaluation.
.. ipython:: python y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat', '-1 days +00:00:05', '1 days'])) y2 y2.mean() y2.median() y2.quantile(.1) y2.sum()
Timedelta Series, TimedeltaIndex
, and Timedelta
scalars can be converted to other 'frequencies' by dividing by another timedelta,
or by astyping to a specific timedelta type. These operations yield Series and propagate NaT
-> nan
.
Note that division by the numpy scalar is true division, while astyping is equivalent of floor division.
.. ipython:: python td = pd.Series(pd.date_range('20130101', periods=4)) - \ pd.Series(pd.date_range('20121201', periods=4)) td[2] += datetime.timedelta(minutes=5, seconds=3) td[3] = np.nan td # to days td / np.timedelta64(1, 'D') td.astype('timedelta64[D]') # to seconds td / np.timedelta64(1, 's') td.astype('timedelta64[s]') # to months (these are constant months) td / np.timedelta64(1, 'M')
Dividing or multiplying a timedelta64[ns]
Series by an integer or integer Series
yields another timedelta64[ns]
dtypes Series.
.. ipython:: python td * -1 td * pd.Series([1, 2, 3, 4])
Rounded division (floor-division) of a timedelta64[ns]
Series by a scalar
Timedelta
gives a series of integers.
.. ipython:: python td // pd.Timedelta(days=3, hours=4) pd.Timedelta(days=3, hours=4) // td
You can access various components of the Timedelta
or TimedeltaIndex
directly using the attributes days,seconds,microseconds,nanoseconds
. These are identical to the values returned by datetime.timedelta
, in that, for example, the .seconds
attribute represents the number of seconds >= 0 and < 1 day. These are signed according to whether the Timedelta
is signed.
These operations can also be directly accessed via the .dt
property of the Series
as well.
Note
Note that the attributes are NOT the displayed values of the Timedelta
. Use .components
to retrieve the displayed values.
For a Series
:
.. ipython:: python td.dt.days td.dt.seconds
You can access the value of the fields for a scalar Timedelta
directly.
.. ipython:: python tds = pd.Timedelta('31 days 5 min 3 sec') tds.days tds.seconds (-tds).seconds
You can use the .components
property to access a reduced form of the timedelta. This returns a DataFrame
indexed
similarly to the Series
. These are the displayed values of the Timedelta
.
.. ipython:: python td.dt.components td.dt.components.seconds
You can convert a Timedelta
to an ISO 8601 Duration string with the
.isoformat
method
.. versionadded:: 0.20.0
.. ipython:: python pd.Timedelta(days=6, minutes=50, seconds=3, milliseconds=10, microseconds=10, nanoseconds=12).isoformat()
To generate an index with time delta, you can use either the TimedeltaIndex
or
the timedelta_range
constructor.
Using TimedeltaIndex
you can pass string-like, Timedelta
, timedelta
,
or np.timedelta64
objects. Passing np.nan/pd.NaT/nat
will represent missing values.
.. ipython:: python pd.TimedeltaIndex(['1 days', '1 days, 00:00:05', np.timedelta64(2,'D'), datetime.timedelta(days=2,seconds=2)])
Similarly to date_range
, you can construct regular ranges of a TimedeltaIndex
:
.. ipython:: python pd.timedelta_range(start='1 days', periods=5, freq='D') pd.timedelta_range(start='1 days', end='2 days', freq='30T')
Similarly to other of the datetime-like indices, DatetimeIndex
and PeriodIndex
, you can use
TimedeltaIndex
as the index of pandas objects.
.. ipython:: python s = pd.Series(np.arange(100), index=pd.timedelta_range('1 days', periods=100, freq='h')) s
Selections work similarly, with coercion on string-likes and slices:
.. ipython:: python s['1 day':'2 day'] s['1 day 01:00:00'] s[pd.Timedelta('1 day 1h')]
Furthermore you can use partial string selection and the range will be inferred:
.. ipython:: python s['1 day':'1 day 5 hours']
Finally, the combination of TimedeltaIndex
with DatetimeIndex
allow certain combination operations that are NaT preserving:
.. ipython:: python tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days']) tdi.tolist() dti = pd.date_range('20130101', periods=3) dti.tolist() (dti + tdi).tolist() (dti - tdi).tolist()
Similarly to frequency conversion on a Series
above, you can convert these indices to yield another Index.
.. ipython:: python tdi / np.timedelta64(1,'s') tdi.astype('timedelta64[s]')
Scalars type ops work as well. These can potentially return a different type of index.
.. ipython:: python # adding or timedelta and date -> datelike tdi + pd.Timestamp('20130101') # subtraction of a date and a timedelta -> datelike # note that trying to subtract a date from a Timedelta will raise an exception (pd.Timestamp('20130101') - tdi).tolist() # timedelta + timedelta -> timedelta tdi + pd.Timedelta('10 days') # division can result in a Timedelta if the divisor is an integer tdi / 2 # or a Float64Index if the divisor is a Timedelta tdi / tdi[0]
Similar to :ref:`timeseries resampling <timeseries.resampling>`, we can resample with a TimedeltaIndex
.
.. ipython:: python s.resample('D').mean()