forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_timedelta.py
177 lines (143 loc) · 5.69 KB
/
test_timedelta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
NaT,
Series,
Timedelta,
TimedeltaIndex,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import TimedeltaArray
from pandas.tests.indexes.datetimelike import DatetimeLike
randn = np.random.randn
class TestTimedeltaIndex(DatetimeLike):
_index_cls = TimedeltaIndex
@pytest.fixture
def simple_index(self) -> TimedeltaIndex:
index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
assert index.freq == "D"
ret = index + pd.offsets.Hour(1)
assert ret.freq == "D"
return ret
@pytest.fixture
def index(self):
return tm.makeTimedeltaIndex(10)
def test_numeric_compat(self):
# Dummy method to override super's version; this test is now done
# in test_arithmetic.py
pass
def test_shift(self):
pass # this is handled in test_arithmetic.py
def test_misc_coverage(self):
rng = timedelta_range("1 day", periods=5)
result = rng.groupby(rng.days)
assert isinstance(list(result.values())[0][0], Timedelta)
def test_map(self):
# test_map_dictlike generally tests
rng = timedelta_range("1 day", periods=10)
f = lambda x: x.days
result = rng.map(f)
exp = Index([f(x) for x in rng], dtype=np.int32)
tm.assert_index_equal(result, exp)
def test_pass_TimedeltaIndex_to_index(self):
rng = timedelta_range("1 days", "10 days")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pytimedelta(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
def test_fields(self):
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
tm.assert_index_equal(rng.days, Index([1, 1], dtype=np.int32))
tm.assert_index_equal(
rng.seconds,
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype=np.int32),
)
tm.assert_index_equal(
rng.microseconds,
Index([100 * 1000 + 123, 100 * 1000 + 123], dtype=np.int32),
)
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype=np.int32))
msg = "'TimedeltaIndex' object has no attribute '{}'"
with pytest.raises(AttributeError, match=msg.format("hours")):
rng.hours
with pytest.raises(AttributeError, match=msg.format("minutes")):
rng.minutes
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
rng.milliseconds
# with nat
s = Series(rng)
s[1] = np.nan
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
tm.assert_series_equal(
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
)
# preserve name (GH15589)
rng.name = "name"
assert rng.days.name == "name"
def test_freq_conversion_always_floating(self):
# pre-2.0 td64 astype converted to float64. now for supported units
# (s, ms, us, ns) this converts to the requested dtype.
# This matches TDA and Series
tdi = timedelta_range("1 Day", periods=30)
res = tdi.astype("m8[s]")
exp_values = np.asarray(tdi).astype("m8[s]")
exp_tda = TimedeltaArray._simple_new(
exp_values, dtype=exp_values.dtype, freq=tdi.freq
)
expected = Index(exp_tda)
assert expected.dtype == "m8[s]"
tm.assert_index_equal(res, expected)
# check this matches Series and TimedeltaArray
res = tdi._data.astype("m8[s]")
tm.assert_equal(res, expected._values)
res = tdi.to_series().astype("m8[s]")
tm.assert_equal(res._values, expected._values._with_freq(None))
def test_freq_conversion(self, index_or_series):
# doc example
scalar = Timedelta(days=31)
td = index_or_series(
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
dtype="m8[ns]",
)
result = td / np.timedelta64(1, "D")
expected = index_or_series(
[31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]
)
tm.assert_equal(result, expected)
# We don't support "D" reso, so we use the pre-2.0 behavior
# casting to float64
msg = (
r"Cannot convert from timedelta64\[ns\] to timedelta64\[D\]. "
"Supported resolutions are 's', 'ms', 'us', 'ns'"
)
with pytest.raises(ValueError, match=msg):
td.astype("timedelta64[D]")
result = td / np.timedelta64(1, "s")
expected = index_or_series(
[31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]
)
tm.assert_equal(result, expected)
exp_values = np.asarray(td).astype("m8[s]")
exp_tda = TimedeltaArray._simple_new(exp_values, dtype=exp_values.dtype)
expected = index_or_series(exp_tda)
assert expected.dtype == "m8[s]"
result = td.astype("timedelta64[s]")
tm.assert_equal(result, expected)
def test_arithmetic_zero_freq(self):
# GH#51575 don't get a .freq with freq.n = 0
tdi = timedelta_range(0, periods=100, freq="ns")
result = tdi / 2
assert result.freq is None
expected = tdi[:50].repeat(2)
tm.assert_index_equal(result, expected)
result2 = tdi // 2
assert result2.freq is None
expected2 = expected
tm.assert_index_equal(result2, expected2)
result3 = tdi * 0
assert result3.freq is None
expected3 = tdi[:1].repeat(100)
tm.assert_index_equal(result3, expected3)