forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseries.py
822 lines (673 loc) · 27.9 KB
/
series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
"""
Data structures for sparse float data. Life is made simpler by dealing only
with float64 data
"""
# pylint: disable=E1101,E1103,W0231
import numpy as np
import warnings
from pandas.core.dtypes.missing import isna, notna
from pandas.compat.numpy import function as nv
from pandas.core.index import Index, _ensure_index, InvalidIndexError
from pandas.core.series import Series
from pandas.core.internals import SingleBlockManager
from pandas.core import generic
import pandas.core.common as com
import pandas.core.ops as ops
import pandas._libs.index as libindex
from pandas.util._decorators import Appender
from pandas.core.sparse.array import (
make_sparse, SparseArray,
_make_index)
from pandas._libs.sparse import BlockIndex, IntIndex
import pandas._libs.sparse as splib
from pandas.core.sparse.scipy_sparse import (
_sparse_series_to_coo,
_coo_to_sparse_series)
_shared_doc_kwargs = dict(axes='index', klass='SparseSeries',
axes_single_arg="{0, 'index'}",
optional_labels='', optional_axis='')
class SparseSeries(Series):
"""Data structure for labeled, sparse floating point data
Parameters
----------
data : {array-like, Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
Code for missing value. Defaults depends on dtype.
0 for int dtype, False for bool dtype, and NaN for other dtypes
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
_subtyp = 'sparse_series'
def __init__(self, data=None, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, dtype=None, copy=False,
fastpath=False):
# we are called internally, so short-circuit
if fastpath:
# data is an ndarray, index is defined
if not isinstance(data, SingleBlockManager):
data = SingleBlockManager(data, index, fastpath=True)
if copy:
data = data.copy()
else:
if data is None:
data = []
if isinstance(data, Series) and name is None:
name = data.name
if isinstance(data, SparseArray):
if index is not None:
assert (len(index) == len(data))
sparse_index = data.sp_index
if fill_value is None:
fill_value = data.fill_value
data = np.asarray(data)
elif isinstance(data, SparseSeries):
if index is None:
index = data.index.view()
if fill_value is None:
fill_value = data.fill_value
# extract the SingleBlockManager
data = data._data
elif isinstance(data, (Series, dict)):
data = Series(data, index=index)
index = data.index.view()
res = make_sparse(data, kind=kind, fill_value=fill_value)
data, sparse_index, fill_value = res
elif isinstance(data, (tuple, list, np.ndarray)):
# array-like
if sparse_index is None:
res = make_sparse(data, kind=kind, fill_value=fill_value)
data, sparse_index, fill_value = res
else:
assert (len(data) == sparse_index.npoints)
elif isinstance(data, SingleBlockManager):
if dtype is not None:
data = data.astype(dtype)
if index is None:
index = data.index.view()
elif not data.index.equals(index) or copy: # pragma: no cover
# GH#19275 SingleBlockManager input should only be called
# internally
raise AssertionError('Cannot pass both SingleBlockManager '
'`data` argument and a different '
'`index` argument. `copy` must '
'be False.')
else:
length = len(index)
if data == fill_value or (isna(data) and isna(fill_value)):
if kind == 'block':
sparse_index = BlockIndex(length, [], [])
else:
sparse_index = IntIndex(length, [])
data = np.array([])
else:
if kind == 'block':
locs, lens = ([0], [length]) if length else ([], [])
sparse_index = BlockIndex(length, locs, lens)
else:
sparse_index = IntIndex(length, index)
v = data
data = np.empty(length)
data.fill(v)
if index is None:
index = com._default_index(sparse_index.length)
index = _ensure_index(index)
# create/copy the manager
if isinstance(data, SingleBlockManager):
if copy:
data = data.copy()
else:
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(data, sparse_index=sparse_index,
fill_value=fill_value, dtype=dtype,
copy=copy)
data = SingleBlockManager(data, index)
generic.NDFrame.__init__(self, data)
self.index = index
self.name = name
@property
def values(self):
""" return the array """
return self.block.values
def __array__(self, result=None):
""" the array interface, return my values """
return self.block.values
def get_values(self):
""" same as values """
return self.block.to_dense().view()
@property
def block(self):
return self._data._block
@property
def fill_value(self):
return self.block.fill_value
@fill_value.setter
def fill_value(self, v):
self.block.fill_value = v
@property
def sp_index(self):
return self.block.sp_index
@property
def sp_values(self):
return self.values.sp_values
@property
def npoints(self):
return self.sp_index.npoints
@classmethod
def from_array(cls, arr, index=None, name=None, copy=False,
fill_value=None, fastpath=False):
"""Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
"""
warnings.warn("'from_array' is deprecated and will be removed in a "
"future version. Please use the pd.SparseSeries(..) "
"constructor instead.", FutureWarning, stacklevel=2)
return cls._from_array(arr, index=index, name=name, copy=copy,
fill_value=fill_value, fastpath=fastpath)
@classmethod
def _from_array(cls, arr, index=None, name=None, copy=False,
fill_value=None, fastpath=False):
return cls(arr, index=index, name=name, copy=copy,
fill_value=fill_value, fastpath=fastpath)
@property
def _constructor(self):
return SparseSeries
@property
def _constructor_expanddim(self):
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return 'block'
elif isinstance(self.sp_index, IntIndex):
return 'integer'
def as_sparse_array(self, kind=None, fill_value=None, copy=False):
""" return my self as a sparse array, do not copy by default """
if fill_value is None:
fill_value = self.fill_value
if kind is None:
kind = self.kind
return SparseArray(self.values, sparse_index=self.sp_index,
fill_value=fill_value, kind=kind, copy=copy)
def __len__(self):
return len(self.block)
@property
def shape(self):
return self._data.shape
def __unicode__(self):
# currently, unicode is same as repr...fixes infinite loop
series_rep = Series.__unicode__(self)
rep = '{series}\n{index!r}'.format(series=series_rep,
index=self.sp_index)
return rep
def __array_wrap__(self, result, context=None):
"""
Gets called prior to a ufunc (and after)
See SparseArray.__array_wrap__ for detail.
"""
if isinstance(context, tuple) and len(context) == 3:
ufunc, args, domain = context
args = [getattr(a, 'fill_value', a) for a in args]
with np.errstate(all='ignore'):
fill_value = ufunc(self.fill_value, *args[1:])
else:
fill_value = self.fill_value
return self._constructor(result, index=self.index,
sparse_index=self.sp_index,
fill_value=fill_value,
copy=False).__finalize__(self)
def __array_finalize__(self, obj):
"""
Gets called after any ufunc or other array operations, necessary
to pass on the index.
"""
self.name = getattr(obj, 'name', None)
self.fill_value = getattr(obj, 'fill_value', None)
def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None,
filter_type=None, **kwds):
""" perform a reduction operation """
return op(self.get_values(), skipna=skipna, **kwds)
def __getstate__(self):
# pickling
return dict(_typ=self._typ, _subtyp=self._subtyp, _data=self._data,
fill_value=self.fill_value, name=self.name)
def _unpickle_series_compat(self, state):
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(data, sparse_index=sp_index,
fill_value=fill_value, copy=False)
# recreate
data = SingleBlockManager(data, index, fastpath=True)
generic.NDFrame.__init__(self, data)
self._set_axis(0, index)
self.name = name
def __iter__(self):
""" forward to the array """
return iter(self.values)
def _set_subtyp(self, is_all_dates):
if is_all_dates:
object.__setattr__(self, '_subtyp', 'sparse_time_series')
else:
object.__setattr__(self, '_subtyp', 'sparse_series')
def _ixs(self, i, axis=0):
"""
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
"""
label = self.index[i]
if isinstance(label, Index):
return self.take(i, axis=axis)
else:
return self._get_val_at(i)
def _get_val_at(self, loc):
""" forward to the array """
return self.block.values._get_val_at(loc)
def __getitem__(self, key):
try:
return self.index.get_value(self, key)
except InvalidIndexError:
pass
except KeyError:
if isinstance(key, (int, np.integer)):
return self._get_val_at(key)
elif key is Ellipsis:
return self
raise Exception('Requested index not in this series!')
except TypeError:
# Could not hash item, must be array-like?
pass
key = com._values_from_object(key)
if self.index.nlevels > 1 and isinstance(key, tuple):
# to handle MultiIndex labels
key = self.index.get_loc(key)
return self._constructor(self.values[key],
index=self.index[key]).__finalize__(self)
def _get_values(self, indexer):
try:
return self._constructor(self._data.get_slice(indexer),
fastpath=True).__finalize__(self)
except Exception:
return self[indexer]
def _set_with_engine(self, key, value):
return self._set_value(key, value)
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: type of caller
"""
return self._constructor(np.abs(self.values),
index=self.index).__finalize__(self)
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
def get_value(self, label, takeable=False):
"""
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
"""
warnings.warn("get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._get_value(label, takeable=takeable)
def _get_value(self, label, takeable=False):
loc = label if takeable is True else self.index.get_loc(label)
return self._get_val_at(loc)
_get_value.__doc__ = get_value.__doc__
def set_value(self, label, value, takeable=False):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
warnings.warn("set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead", FutureWarning,
stacklevel=2)
return self._set_value(label, value, takeable=takeable)
def _set_value(self, label, value, takeable=False):
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibly change the index
new_values = values._set_value(label, value, takeable=takeable)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
_set_value.__doc__ = set_value.__doc__
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = libindex.convert_scalar(values, value)
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, self.index)
def to_dense(self, sparse_only=False):
"""
Convert SparseSeries to a Series.
Parameters
----------
sparse_only : bool, default False
.. deprecated:: 0.20.0
This argument will be removed in a future version.
If True, return just the non-sparse values, or the dense version
of `self.values` if False.
Returns
-------
s : Series
"""
if sparse_only:
warnings.warn(("The 'sparse_only' parameter has been deprecated "
"and will be removed in a future version."),
FutureWarning, stacklevel=2)
int_index = self.sp_index.to_int_index()
index = self.index.take(int_index.indices)
return Series(self.sp_values, index=index, name=self.name)
else:
return Series(self.values.to_dense(), index=self.index,
name=self.name)
@property
def density(self):
r = float(self.sp_index.npoints) / float(self.sp_index.length)
return r
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
new_data = self._data
if deep:
new_data = self._data.copy()
return self._constructor(new_data, sparse_index=self.sp_index,
fill_value=self.fill_value).__finalize__(self)
@Appender(generic._shared_docs['reindex'] % _shared_doc_kwargs)
def reindex(self, index=None, method=None, copy=True, limit=None,
**kwargs):
return super(SparseSeries, self).reindex(index=index, method=method,
copy=copy, limit=limit,
**kwargs)
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError('new index must be a SparseIndex')
block = self.block.sparse_reindex(new_index)
new_data = SingleBlockManager(block, self.index)
return self._constructor(new_data, index=self.index,
sparse_index=new_index,
fill_value=self.fill_value).__finalize__(self)
@Appender(generic._shared_docs['take'])
def take(self, indices, axis=0, convert=None, *args, **kwargs):
if convert is not None:
msg = ("The 'convert' parameter is deprecated "
"and will be removed in a future version.")
warnings.warn(msg, FutureWarning, stacklevel=2)
else:
convert = True
nv.validate_take_with_convert(convert, args, kwargs)
new_values = SparseArray.take(self.values, indices)
new_index = self.index.take(indices)
return self._constructor(new_values,
index=new_index).__finalize__(self)
def cumsum(self, axis=0, *args, **kwargs):
"""
Cumulative sum of non-NA/null values.
When performing the cumulative summation, any non-NA/null values will
be skipped. The resulting SparseSeries will preserve the locations of
NaN values, but the fill value will be `np.nan` regardless.
Parameters
----------
axis : {0}
Returns
-------
cumsum : SparseSeries
"""
nv.validate_cumsum(args, kwargs)
if axis is not None:
axis = self._get_axis_number(axis)
new_array = self.values.cumsum()
return self._constructor(
new_array, index=self.index,
sparse_index=new_array.sp_index).__finalize__(self)
@Appender(generic._shared_docs['isna'] % _shared_doc_kwargs)
def isna(self):
arr = SparseArray(isna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=isna(self.fill_value))
return self._constructor(arr, index=self.index).__finalize__(self)
isnull = isna
@Appender(generic._shared_docs['notna'] % _shared_doc_kwargs)
def notna(self):
arr = SparseArray(notna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=notna(self.fill_value))
return self._constructor(arr, index=self.index).__finalize__(self)
notnull = notna
def dropna(self, axis=0, inplace=False, **kwargs):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
axis = self._get_axis_number(axis or 0)
dense_valid = self.to_dense().dropna()
if inplace:
raise NotImplementedError("Cannot perform inplace dropna"
" operations on a SparseSeries")
if isna(self.fill_value):
return dense_valid
else:
dense_valid = dense_valid[dense_valid != self.fill_value]
return dense_valid.to_sparse(fill_value=self.fill_value)
@Appender(generic._shared_docs['shift'] % _shared_doc_kwargs)
def shift(self, periods, freq=None, axis=0):
if periods == 0:
return self.copy()
# no special handling of fill values yet
if not isna(self.fill_value):
shifted = self.to_dense().shift(periods, freq=freq,
axis=axis)
return shifted.to_sparse(fill_value=self.fill_value,
kind=self.kind)
if freq is not None:
return self._constructor(
self.sp_values, sparse_index=self.sp_index,
index=self.index.shift(periods, freq),
fill_value=self.fill_value).__finalize__(self)
int_index = self.sp_index.to_int_index()
new_indices = int_index.indices + periods
start, end = new_indices.searchsorted([0, int_index.length])
new_indices = new_indices[start:end]
new_sp_index = _make_index(len(self), new_indices, self.sp_index)
arr = self.values._simple_new(self.sp_values[start:end].copy(),
new_sp_index, fill_value=np.nan)
return self._constructor(arr, index=self.index).__finalize__(self)
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False):
"""
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.
Use row_levels and column_levels to determine the row and column
coordinates respectively. row_levels and column_levels are the names
(labels) or numbers of the levels. {row_levels, column_levels} must be
a partition of the MultiIndex level names (or numbers).
Parameters
----------
row_levels : tuple/list
column_levels : tuple/list
sort_labels : bool, default False
Sort the row and column labels before forming the sparse matrix.
Returns
-------
y : scipy.sparse.coo_matrix
rows : list (row labels)
columns : list (column labels)
Examples
--------
>>> from numpy import nan
>>> s = Series([3.0, nan, 1.0, 3.0, nan, nan])
>>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
(1, 2, 'a', 1),
(1, 1, 'b', 0),
(1, 1, 'b', 1),
(2, 1, 'b', 0),
(2, 1, 'b', 1)],
names=['A', 'B', 'C', 'D'])
>>> ss = s.to_sparse()
>>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
column_levels=['C', 'D'],
sort_labels=True)
>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[ 0., 0., 1., 3.],
[ 3., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> rows
[(1, 1), (1, 2), (2, 1)]
>>> columns
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]
"""
A, rows, columns = _sparse_series_to_coo(self, row_levels,
column_levels,
sort_labels=sort_labels)
return A, rows, columns
@classmethod
def from_coo(cls, A, dense_index=False):
"""
Create a SparseSeries from a scipy.sparse.coo_matrix.
Parameters
----------
A : scipy.sparse.coo_matrix
dense_index : bool, default False
If False (default), the SparseSeries index consists of only the
coords of the non-null entries of the original coo_matrix.
If True, the SparseSeries index consists of the full sorted
(row, col) coordinates of the coo_matrix.
Returns
-------
s : SparseSeries
Examples
---------
>>> from scipy import sparse
>>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
shape=(3, 4))
>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[ 0., 0., 1., 2.],
[ 3., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> ss = SparseSeries.from_coo(A)
>>> ss
0 2 1
3 2
1 0 3
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)
"""
return _coo_to_sparse_series(A, dense_index=dense_index)
# overwrite series methods with unaccelerated versions
ops.add_special_arithmetic_methods(SparseSeries, **ops.series_special_funcs)
ops.add_flex_arithmetic_methods(SparseSeries, **ops.series_flex_funcs)
# overwrite basic arithmetic to use SparseSeries version
# force methods to overwrite previous definitions.
ops.add_special_arithmetic_methods(SparseSeries,
ops._arith_method_SPARSE_SERIES,
comp_method=ops._arith_method_SPARSE_SERIES,
bool_method=None)