forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconstruction.py
837 lines (686 loc) · 26.8 KB
/
construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
"""
Constructor functions intended to be shared by pd.array, Series.__init__,
and Index.__new__.
These should not depend on core.internals.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Sequence,
cast,
)
import warnings
import numpy as np
import numpy.ma as ma
from pandas._libs import lib
from pandas._typing import (
AnyArrayLike,
ArrayLike,
Dtype,
DtypeObj,
)
from pandas.errors import IntCastingNaNError
from pandas.core.dtypes.base import (
ExtensionDtype,
_registry as registry,
)
from pandas.core.dtypes.cast import (
construct_1d_arraylike_from_scalar,
construct_1d_object_array_from_listlike,
maybe_cast_to_datetime,
maybe_cast_to_integer_array,
maybe_convert_platform,
maybe_infer_to_datetimelike,
maybe_upcast,
sanitize_to_nanoseconds,
)
from pandas.core.dtypes.common import (
is_datetime64_ns_dtype,
is_extension_array_dtype,
is_float_dtype,
is_integer_dtype,
is_list_like,
is_object_dtype,
is_timedelta64_ns_dtype,
)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.generic import (
ABCExtensionArray,
ABCIndex,
ABCPandasArray,
ABCRangeIndex,
ABCSeries,
)
from pandas.core.dtypes.missing import isna
import pandas.core.common as com
if TYPE_CHECKING:
from pandas import (
ExtensionArray,
Index,
Series,
)
def array(
data: Sequence[object] | AnyArrayLike,
dtype: Dtype | None = None,
copy: bool = True,
) -> ExtensionArray:
"""
Create an array.
Parameters
----------
data : Sequence of objects
The scalars inside `data` should be instances of the
scalar type for `dtype`. It's expected that `data`
represents a 1-dimensional array of data.
When `data` is an Index or Series, the underlying array
will be extracted from `data`.
dtype : str, np.dtype, or ExtensionDtype, optional
The dtype to use for the array. This may be a NumPy
dtype or an extension type registered with pandas using
:meth:`pandas.api.extensions.register_extension_dtype`.
If not specified, there are two possibilities:
1. When `data` is a :class:`Series`, :class:`Index`, or
:class:`ExtensionArray`, the `dtype` will be taken
from the data.
2. Otherwise, pandas will attempt to infer the `dtype`
from the data.
Note that when `data` is a NumPy array, ``data.dtype`` is
*not* used for inferring the array type. This is because
NumPy cannot represent all the types of data that can be
held in extension arrays.
Currently, pandas will infer an extension dtype for sequences of
============================== =======================================
Scalar Type Array Type
============================== =======================================
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
:class:`int` :class:`pandas.arrays.IntegerArray`
:class:`float` :class:`pandas.arrays.FloatingArray`
:class:`str` :class:`pandas.arrays.StringArray` or
:class:`pandas.arrays.ArrowStringArray`
:class:`bool` :class:`pandas.arrays.BooleanArray`
============================== =======================================
The ExtensionArray created when the scalar type is :class:`str` is determined by
``pd.options.mode.string_storage`` if the dtype is not explicitly given.
For all other cases, NumPy's usual inference rules will be used.
.. versionchanged:: 1.0.0
Pandas infers nullable-integer dtype for integer data,
string dtype for string data, and nullable-boolean dtype
for boolean data.
.. versionchanged:: 1.2.0
Pandas now also infers nullable-floating dtype for float-like
input data
copy : bool, default True
Whether to copy the data, even if not necessary. Depending
on the type of `data`, creating the new array may require
copying data, even if ``copy=False``.
Returns
-------
ExtensionArray
The newly created array.
Raises
------
ValueError
When `data` is not 1-dimensional.
See Also
--------
numpy.array : Construct a NumPy array.
Series : Construct a pandas Series.
Index : Construct a pandas Index.
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
Series.array : Extract the array stored within a Series.
Notes
-----
Omitting the `dtype` argument means pandas will attempt to infer the
best array type from the values in the data. As new array types are
added by pandas and 3rd party libraries, the "best" array type may
change. We recommend specifying `dtype` to ensure that
1. the correct array type for the data is returned
2. the returned array type doesn't change as new extension types
are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned
array matters, we recommend specifying the `dtype` as a concrete object
rather than a string alias or allowing it to be inferred. For example,
a future version of pandas or a 3rd-party library may include a
dedicated ExtensionArray for string data. In this event, the following
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
array.
>>> pd.array(['a', 'b'], dtype=str)
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string
data. If you really need the new array to be backed by a NumPy array,
specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
* :class:`arrays.DatetimeArray`
* :class:`arrays.TimedeltaArray`
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
rather than a ``PandasArray``. This is for symmetry with the case of
timezone-aware data, which NumPy does not natively support.
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
<DatetimeArray>
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
<TimedeltaArray>
['0 days 01:00:00', '0 days 02:00:00']
Length: 2, dtype: timedelta64[ns]
Examples
--------
If a dtype is not specified, pandas will infer the best dtype from the values.
See the description of `dtype` for the types pandas infers for.
>>> pd.array([1, 2])
<IntegerArray>
[1, 2]
Length: 2, dtype: Int64
>>> pd.array([1, 2, np.nan])
<IntegerArray>
[1, 2, <NA>]
Length: 3, dtype: Int64
>>> pd.array([1.1, 2.2])
<FloatingArray>
[1.1, 2.2]
Length: 2, dtype: Float64
>>> pd.array(["a", None, "c"])
<StringArray>
['a', <NA>, 'c']
Length: 3, dtype: string
>>> with pd.option_context("string_storage", "pyarrow"):
... arr = pd.array(["a", None, "c"])
...
>>> arr
<ArrowStringArray>
['a', <NA>, 'c']
Length: 3, dtype: string
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
<PeriodArray>
['2000-01-01', '2000-01-01']
Length: 2, dtype: period[D]
You can use the string alias for `dtype`
>>> pd.array(['a', 'b', 'a'], dtype='category')
['a', 'b', 'a']
Categories (2, object): ['a', 'b']
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'],
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
['a', 'b', 'a']
Categories (3, object): ['a' < 'b' < 'c']
If pandas does not infer a dedicated extension type a
:class:`arrays.PandasArray` is returned.
>>> pd.array([1 + 1j, 3 + 2j])
<PandasArray>
[(1+1j), (3+2j)]
Length: 2, dtype: complex128
As mentioned in the "Notes" section, new extension types may be added
in the future (by pandas or 3rd party libraries), causing the return
value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`
as a NumPy dtype if you need to ensure there's no future change in
behavior.
>>> pd.array([1, 2], dtype=np.dtype("int32"))
<PandasArray>
[1, 2]
Length: 2, dtype: int32
`data` must be 1-dimensional. A ValueError is raised when the input
has the wrong dimensionality.
>>> pd.array(1)
Traceback (most recent call last):
...
ValueError: Cannot pass scalar '1' to 'pandas.array'.
"""
from pandas.core.arrays import (
BooleanArray,
DatetimeArray,
FloatingArray,
IntegerArray,
IntervalArray,
PandasArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.arrays.string_ import StringDtype
if lib.is_scalar(data):
msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
raise ValueError(msg)
if dtype is None and isinstance(data, (ABCSeries, ABCIndex, ABCExtensionArray)):
# Note: we exclude np.ndarray here, will do type inference on it
dtype = data.dtype
data = extract_array(data, extract_numpy=True)
# this returns None for not-found dtypes.
if isinstance(dtype, str):
dtype = registry.find(dtype) or dtype
if is_extension_array_dtype(dtype):
cls = cast(ExtensionDtype, dtype).construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
if dtype is None:
inferred_dtype = lib.infer_dtype(data, skipna=True)
if inferred_dtype == "period":
return PeriodArray._from_sequence(data, copy=copy)
elif inferred_dtype == "interval":
return IntervalArray(data, copy=copy)
elif inferred_dtype.startswith("datetime"):
# datetime, datetime64
try:
return DatetimeArray._from_sequence(data, copy=copy)
except ValueError:
# Mixture of timezones, fall back to PandasArray
pass
elif inferred_dtype.startswith("timedelta"):
# timedelta, timedelta64
return TimedeltaArray._from_sequence(data, copy=copy)
elif inferred_dtype == "string":
# StringArray/ArrowStringArray depending on pd.options.mode.string_storage
return StringDtype().construct_array_type()._from_sequence(data, copy=copy)
elif inferred_dtype == "integer":
return IntegerArray._from_sequence(data, copy=copy)
elif inferred_dtype in ("floating", "mixed-integer-float"):
return FloatingArray._from_sequence(data, copy=copy)
elif inferred_dtype == "boolean":
return BooleanArray._from_sequence(data, copy=copy)
# Pandas overrides NumPy for
# 1. datetime64[ns]
# 2. timedelta64[ns]
# so that a DatetimeArray is returned.
if is_datetime64_ns_dtype(dtype):
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
elif is_timedelta64_ns_dtype(dtype):
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
return PandasArray._from_sequence(data, dtype=dtype, copy=copy)
def extract_array(
obj: object, extract_numpy: bool = False, extract_range: bool = False
) -> Any | ArrayLike:
"""
Extract the ndarray or ExtensionArray from a Series or Index.
For all other types, `obj` is just returned as is.
Parameters
----------
obj : object
For Series / Index, the underlying ExtensionArray is unboxed.
For Numpy-backed ExtensionArrays, the ndarray is extracted.
extract_numpy : bool, default False
Whether to extract the ndarray from a PandasArray
extract_range : bool, default False
If we have a RangeIndex, return range._values if True
(which is a materialized integer ndarray), otherwise return unchanged.
Returns
-------
arr : object
Examples
--------
>>> extract_array(pd.Series(['a', 'b', 'c'], dtype='category'))
['a', 'b', 'c']
Categories (3, object): ['a', 'b', 'c']
Other objects like lists, arrays, and DataFrames are just passed through.
>>> extract_array([1, 2, 3])
[1, 2, 3]
For an ndarray-backed Series / Index a PandasArray is returned.
>>> extract_array(pd.Series([1, 2, 3]))
<PandasArray>
[1, 2, 3]
Length: 3, dtype: int64
To extract all the way down to the ndarray, pass ``extract_numpy=True``.
>>> extract_array(pd.Series([1, 2, 3]), extract_numpy=True)
array([1, 2, 3])
"""
if isinstance(obj, (ABCIndex, ABCSeries)):
if isinstance(obj, ABCRangeIndex):
if extract_range:
return obj._values
return obj
obj = obj.array
if extract_numpy and isinstance(obj, ABCPandasArray):
obj = obj.to_numpy()
return obj
def ensure_wrapped_if_datetimelike(arr):
"""
Wrap datetime64 and timedelta64 ndarrays in DatetimeArray/TimedeltaArray.
"""
if isinstance(arr, np.ndarray):
if arr.dtype.kind == "M":
from pandas.core.arrays import DatetimeArray
return DatetimeArray._from_sequence(arr)
elif arr.dtype.kind == "m":
from pandas.core.arrays import TimedeltaArray
return TimedeltaArray._from_sequence(arr)
return arr
def sanitize_masked_array(data: ma.MaskedArray) -> np.ndarray:
"""
Convert numpy MaskedArray to ensure mask is softened.
"""
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = maybe_upcast(data, copy=True)
data.soften_mask() # set hardmask False if it was True
data[mask] = fill_value
else:
data = data.copy()
return data
def sanitize_array(
data,
index: Index | None,
dtype: DtypeObj | None = None,
copy: bool = False,
raise_cast_failure: bool = True,
*,
allow_2d: bool = False,
) -> ArrayLike:
"""
Sanitize input data to an ndarray or ExtensionArray, copy if specified,
coerce to the dtype if specified.
Parameters
----------
data : Any
index : Index or None, default None
dtype : np.dtype, ExtensionDtype, or None, default None
copy : bool, default False
raise_cast_failure : bool, default True
allow_2d : bool, default False
If False, raise if we have a 2D Arraylike.
Returns
-------
np.ndarray or ExtensionArray
Notes
-----
raise_cast_failure=False is only intended to be True when called from the
DataFrame constructor, as the dtype keyword there may be interpreted as only
applying to a subset of columns, see GH#24435.
"""
if isinstance(data, ma.MaskedArray):
data = sanitize_masked_array(data)
# extract ndarray or ExtensionArray, ensure we have no PandasArray
data = extract_array(data, extract_numpy=True)
if isinstance(data, np.ndarray) and data.ndim == 0:
if dtype is None:
dtype = data.dtype
data = lib.item_from_zerodim(data)
elif isinstance(data, range):
# GH#16804
data = range_to_ndarray(data)
copy = False
if not is_list_like(data):
if index is None:
raise ValueError("index must be specified when data is not list-like")
data = construct_1d_arraylike_from_scalar(data, len(index), dtype)
return data
# GH#846
if isinstance(data, np.ndarray):
if dtype is not None and is_float_dtype(data.dtype) and is_integer_dtype(dtype):
# possibility of nan -> garbage
try:
subarr = _try_cast(data, dtype, copy, True)
except IntCastingNaNError:
subarr = np.array(data, copy=copy)
except ValueError:
if not raise_cast_failure:
# i.e. called via DataFrame constructor
warnings.warn(
"In a future version, passing float-dtype values and an "
"integer dtype to DataFrame will retain floating dtype "
"if they cannot be cast losslessly (matching Series behavior). "
"To retain the old behavior, use DataFrame(data).astype(dtype)",
FutureWarning,
stacklevel=4,
)
# GH#40110 until the deprecation is enforced, we _dont_
# ignore the dtype for DataFrame, and _do_ cast even though
# it is lossy.
dtype = cast(np.dtype, dtype)
return np.array(data, dtype=dtype, copy=copy)
subarr = np.array(data, copy=copy)
else:
# we will try to copy by-definition here
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
elif isinstance(data, ABCExtensionArray):
# it is already ensured above this is not a PandasArray
subarr = data
if dtype is not None:
subarr = subarr.astype(dtype, copy=copy)
elif copy:
subarr = subarr.copy()
return subarr
else:
if isinstance(data, (set, frozenset)):
# Raise only for unordered sets, e.g., not for dict_keys
raise TypeError(f"'{type(data).__name__}' type is unordered")
# materialize e.g. generators, convert e.g. tuples, abc.ValueView
if hasattr(data, "__array__"):
# e.g. dask array GH#38645
data = np.asarray(data)
else:
data = list(data)
if dtype is not None or len(data) == 0:
subarr = _try_cast(data, dtype, copy, raise_cast_failure)
else:
subarr = maybe_convert_platform(data)
if subarr.dtype == object:
subarr = cast(np.ndarray, subarr)
subarr = maybe_infer_to_datetimelike(subarr)
subarr = _sanitize_ndim(subarr, data, dtype, index, allow_2d=allow_2d)
if isinstance(subarr, np.ndarray):
# at this point we should have dtype be None or subarr.dtype == dtype
dtype = cast(np.dtype, dtype)
subarr = _sanitize_str_dtypes(subarr, data, dtype, copy)
return subarr
def range_to_ndarray(rng: range) -> np.ndarray:
"""
Cast a range object to ndarray.
"""
# GH#30171 perf avoid realizing range as a list in np.array
try:
arr = np.arange(rng.start, rng.stop, rng.step, dtype="int64")
except OverflowError:
# GH#30173 handling for ranges that overflow int64
if (rng.start >= 0 and rng.step > 0) or (rng.stop >= 0 and rng.step < 0):
try:
arr = np.arange(rng.start, rng.stop, rng.step, dtype="uint64")
except OverflowError:
arr = construct_1d_object_array_from_listlike(list(rng))
else:
arr = construct_1d_object_array_from_listlike(list(rng))
return arr
def _sanitize_ndim(
result: ArrayLike,
data,
dtype: DtypeObj | None,
index: Index | None,
*,
allow_2d: bool = False,
) -> ArrayLike:
"""
Ensure we have a 1-dimensional result array.
"""
if getattr(result, "ndim", 0) == 0:
raise ValueError("result should be arraylike with ndim > 0")
elif result.ndim == 1:
# the result that we want
result = _maybe_repeat(result, index)
elif result.ndim > 1:
if isinstance(data, np.ndarray):
if allow_2d:
return result
raise ValueError("Data must be 1-dimensional")
if is_object_dtype(dtype) and isinstance(dtype, ExtensionDtype):
# i.e. PandasDtype("O")
result = com.asarray_tuplesafe(data, dtype=np.dtype("object"))
cls = dtype.construct_array_type()
result = cls._from_sequence(result, dtype=dtype)
else:
# error: Argument "dtype" to "asarray_tuplesafe" has incompatible type
# "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[str,
# dtype[Any], None]"
result = com.asarray_tuplesafe(data, dtype=dtype) # type: ignore[arg-type]
return result
def _sanitize_str_dtypes(
result: np.ndarray, data, dtype: np.dtype | None, copy: bool
) -> np.ndarray:
"""
Ensure we have a dtype that is supported by pandas.
"""
# This is to prevent mixed-type Series getting all casted to
# NumPy string type, e.g. NaN --> '-1#IND'.
if issubclass(result.dtype.type, str):
# GH#16605
# If not empty convert the data to dtype
# GH#19853: If data is a scalar, result has already the result
if not lib.is_scalar(data):
if not np.all(isna(data)):
data = np.array(data, dtype=dtype, copy=False)
result = np.array(data, dtype=object, copy=copy)
return result
def _maybe_repeat(arr: ArrayLike, index: Index | None) -> ArrayLike:
"""
If we have a length-1 array and an index describing how long we expect
the result to be, repeat the array.
"""
if index is not None:
if 1 == len(arr) != len(index):
arr = arr.repeat(len(index))
return arr
def _try_cast(
arr: list | np.ndarray,
dtype: DtypeObj | None,
copy: bool,
raise_cast_failure: bool,
) -> ArrayLike:
"""
Convert input to numpy ndarray and optionally cast to a given dtype.
Parameters
----------
arr : ndarray or list
Excludes: ExtensionArray, Series, Index.
dtype : np.dtype, ExtensionDtype or None
copy : bool
If False, don't copy the data if not needed.
raise_cast_failure : bool
If True, and if a dtype is specified, raise errors during casting.
Otherwise an object array is returned.
Returns
-------
np.ndarray or ExtensionArray
"""
is_ndarray = isinstance(arr, np.ndarray)
if dtype is None:
# perf shortcut as this is the most common case
if is_ndarray:
arr = cast(np.ndarray, arr)
if arr.dtype != object:
return sanitize_to_nanoseconds(arr, copy=copy)
out = maybe_infer_to_datetimelike(arr)
if out is arr and copy:
out = out.copy()
return out
else:
# i.e. list
varr = np.array(arr, copy=False)
# filter out cases that we _dont_ want to go through
# maybe_infer_to_datetimelike
if varr.dtype != object or varr.size == 0:
return varr
return maybe_infer_to_datetimelike(varr)
elif isinstance(dtype, ExtensionDtype):
# create an extension array from its dtype
if isinstance(dtype, DatetimeTZDtype):
# We can't go through _from_sequence because it handles dt64naive
# data differently; _from_sequence treats naive as wall times,
# while maybe_cast_to_datetime treats it as UTC
# see test_maybe_promote_any_numpy_dtype_with_datetimetz
return maybe_cast_to_datetime(arr, dtype)
# TODO: copy?
array_type = dtype.construct_array_type()._from_sequence
subarr = array_type(arr, dtype=dtype, copy=copy)
return subarr
elif is_object_dtype(dtype):
if not is_ndarray:
subarr = construct_1d_object_array_from_listlike(arr)
return subarr
return ensure_wrapped_if_datetimelike(arr).astype(dtype, copy=copy)
elif dtype.kind == "U":
# TODO: test cases with arr.dtype.kind in ["m", "M"]
return lib.ensure_string_array(arr, convert_na_value=False, copy=copy)
elif dtype.kind in ["m", "M"]:
return maybe_cast_to_datetime(arr, dtype)
try:
# GH#15832: Check if we are requesting a numeric dtype and
# that we can convert the data to the requested dtype.
if is_integer_dtype(dtype):
# this will raise if we have e.g. floats
subarr = maybe_cast_to_integer_array(arr, dtype)
else:
# 4 tests fail if we move this to a try/except/else; see
# test_constructor_compound_dtypes, test_constructor_cast_failure
# test_constructor_dict_cast2, test_loc_setitem_dtype
subarr = np.array(arr, dtype=dtype, copy=copy)
except (ValueError, TypeError):
if raise_cast_failure:
raise
else:
# we only get here with raise_cast_failure False, which means
# called via the DataFrame constructor
# GH#24435
warnings.warn(
f"Could not cast to {dtype}, falling back to object. This "
"behavior is deprecated. In a future version, when a dtype is "
"passed to 'DataFrame', either all columns will be cast to that "
"dtype, or a TypeError will be raised",
FutureWarning,
stacklevel=7,
)
subarr = np.array(arr, dtype=object, copy=copy)
return subarr
def is_empty_data(data: Any) -> bool:
"""
Utility to check if a Series is instantiated with empty data,
which does not contain dtype information.
Parameters
----------
data : array-like, Iterable, dict, or scalar value
Contains data stored in Series.
Returns
-------
bool
"""
is_none = data is None
is_list_like_without_dtype = is_list_like(data) and not hasattr(data, "dtype")
is_simple_empty = is_list_like_without_dtype and not data
return is_none or is_simple_empty
def create_series_with_explicit_dtype(
data: Any = None,
index: ArrayLike | Index | None = None,
dtype: Dtype | None = None,
name: str | None = None,
copy: bool = False,
fastpath: bool = False,
dtype_if_empty: Dtype = object,
) -> Series:
"""
Helper to pass an explicit dtype when instantiating an empty Series.
This silences a DeprecationWarning described in GitHub-17261.
Parameters
----------
data : Mirrored from Series.__init__
index : Mirrored from Series.__init__
dtype : Mirrored from Series.__init__
name : Mirrored from Series.__init__
copy : Mirrored from Series.__init__
fastpath : Mirrored from Series.__init__
dtype_if_empty : str, numpy.dtype, or ExtensionDtype
This dtype will be passed explicitly if an empty Series will
be instantiated.
Returns
-------
Series
"""
from pandas.core.series import Series
if is_empty_data(data) and dtype is None:
dtype = dtype_if_empty
return Series(
data=data, index=index, dtype=dtype, name=name, copy=copy, fastpath=fastpath
)