These are the changes in pandas 1.5.0. See :ref:`release` for a full changelog including other versions of pandas.
{{ header }}
The pandas-stubs
library is now supported by the pandas development team, providing type stubs for the pandas API. Please visit
https://github.com/pandas-dev/pandas-stubs for more information.
We thank VirtusLab and Microsoft for their initial, significant contributions to pandas-stubs
With Pyarrow installed, users can now create pandas objects
that are backed by a pyarrow.ChunkedArray
and pyarrow.DataType
.
The dtype
argument can accept a string of a pyarrow data type
with pyarrow
in brackets e.g. "int64[pyarrow]"
or, for pyarrow data types that take parameters, a :class:`ArrowDtype`
initialized with a pyarrow.DataType
.
.. ipython:: python import pyarrow as pa ser_float = pd.Series([1.0, 2.0, None], dtype="float32[pyarrow]") ser_float list_of_int_type = pd.ArrowDtype(pa.list_(pa.int64())) ser_list = pd.Series([[1, 2], [3, None]], dtype=list_of_int_type) ser_list ser_list.take([1, 0]) ser_float * 5 ser_float.mean() ser_float.dropna()
Most operations are supported and have been implemented using pyarrow compute functions. We recommend installing the latest version of PyArrow to access the most recently implemented compute functions.
Warning
This feature is experimental, and the API can change in a future release without warning.
Pandas now implement the DataFrame interchange API spec. See the full details on the API at https://data-apis.org/dataframe-protocol/latest/index.html
The protocol consists of two parts:
- New method :meth:`DataFrame.__dataframe__` which produces the interchange object. It effectively "exports" the pandas dataframe as an interchange object so any other library which has the protocol implemented can "import" that dataframe without knowing anything about the producer except that it makes an interchange object.
- New function :func:`pandas.api.interchange.from_dataframe` which can take an arbitrary interchange object from any conformant library and construct a pandas DataFrame out of it.
The most notable development is the new method :meth:`.Styler.concat` which allows adding customised footer rows to visualise additional calculations on the data, e.g. totals and counts etc. (:issue:`43875`, :issue:`46186`)
Additionally there is an alternative output method :meth:`.Styler.to_string`, which allows using the Styler's formatting methods to create, for example, CSVs (:issue:`44502`).
A new feature :meth:`.Styler.relabel_index` is also made available to provide full customisation of the display of index or column headers (:issue:`47864`)
Minor feature improvements are:
- Adding the ability to render
border
andborder-{side}
CSS properties in Excel (:issue:`42276`)- Making keyword arguments consist: :meth:`.Styler.highlight_null` now accepts
color
and deprecatesnull_color
although this remains backwards compatible (:issue:`45907`)
Control of index with group_keys
in :meth:`DataFrame.resample`
The argument group_keys
has been added to the method :meth:`DataFrame.resample`.
As with :meth:`DataFrame.groupby`, this argument controls the whether each group is added
to the index in the resample when :meth:`.Resampler.apply` is used.
Warning
Not specifying the group_keys
argument will retain the
previous behavior and emit a warning if the result will change
by specifying group_keys=False
. In a future version
of pandas, not specifying group_keys
will default to
the same behavior as group_keys=False
.
.. ipython:: python df = pd.DataFrame( {'a': range(6)}, index=pd.date_range("2021-01-01", periods=6, freq="8H") ) df.resample("D", group_keys=True).apply(lambda x: x) df.resample("D", group_keys=False).apply(lambda x: x)
Previously, the resulting index would depend upon the values returned by apply
,
as seen in the following example.
In [1]: # pandas 1.3
In [2]: df.resample("D").apply(lambda x: x)
Out[2]:
a
2021-01-01 00:00:00 0
2021-01-01 08:00:00 1
2021-01-01 16:00:00 2
2021-01-02 00:00:00 3
2021-01-02 08:00:00 4
2021-01-02 16:00:00 5
In [3]: df.resample("D").apply(lambda x: x.reset_index())
Out[3]:
index a
2021-01-01 0 2021-01-01 00:00:00 0
1 2021-01-01 08:00:00 1
2 2021-01-01 16:00:00 2
2021-01-02 0 2021-01-02 00:00:00 3
1 2021-01-02 08:00:00 4
2 2021-01-02 16:00:00 5
Added new function :func:`~pandas.from_dummies` to convert a dummy coded :class:`DataFrame` into a categorical :class:`DataFrame`.
.. ipython:: python import pandas as pd df = pd.DataFrame({"col1_a": [1, 0, 1], "col1_b": [0, 1, 0], "col2_a": [0, 1, 0], "col2_b": [1, 0, 0], "col2_c": [0, 0, 1]}) pd.from_dummies(df, sep="_")
The new method :meth:`DataFrame.to_orc` allows writing to ORC files (:issue:`43864`).
This functionality depends the pyarrow library. For more details, see :ref:`the IO docs on ORC <io.orc>`.
Warning
- It is highly recommended to install pyarrow using conda due to some issues occurred by pyarrow.
- :func:`~pandas.DataFrame.to_orc` requires pyarrow>=7.0.0.
- :func:`~pandas.DataFrame.to_orc` is not supported on Windows yet, you can find valid environments on :ref:`install optional dependencies <install.warn_orc>`.
- For supported dtypes please refer to supported ORC features in Arrow.
- Currently timezones in datetime columns are not preserved when a dataframe is converted into ORC files.
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df.to_orc("./out.orc")
I/O methods like :func:`read_csv` or :meth:`DataFrame.to_json` now allow reading and writing directly on TAR archives (:issue:`44787`).
df = pd.read_csv("./movement.tar.gz")
# ...
df.to_csv("./out.tar.gz")
This supports .tar
, .tar.gz
, .tar.bz
and .tar.xz2
archives.
The used compression method is inferred from the filename.
If the compression method cannot be inferred, use the compression
argument:
df = pd.read_csv(some_file_obj, compression={"method": "tar", "mode": "r:gz"}) # noqa F821
(mode
being one of tarfile.open
's modes: https://docs.python.org/3/library/tarfile.html#tarfile.open)
Similar to other IO methods, :func:`pandas.read_xml` now supports assigning specific dtypes to columns, apply converter methods, and parse dates (:issue:`43567`).
.. ipython:: python xml_dates = """<?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> <date>2020-01-01</date> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> <date>2021-01-01</date> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> <date>2022-01-01</date> </row> </data>""" df = pd.read_xml( xml_dates, dtype={'sides': 'Int64'}, converters={'degrees': str}, parse_dates=['date'] ) df df.dtypes
For very large XML files that can range in hundreds of megabytes to gigabytes, :func:`pandas.read_xml` now supports parsing such sizeable files using lxml's iterparse and etree's iterparse which are memory-efficient methods to iterate through XML trees and extract specific elements and attributes without holding entire tree in memory (:issue:`45442`).
In [1]: df = pd.read_xml(
... "/path/to/downloaded/enwikisource-latest-pages-articles.xml",
... iterparse = {"page": ["title", "ns", "id"]})
... )
df
Out[2]:
title ns id
0 Gettysburg Address 0 21450
1 Main Page 0 42950
2 Declaration by United Nations 0 8435
3 Constitution of the United States of America 0 8435
4 Declaration of Independence (Israel) 0 17858
... ... ... ...
3578760 Page:Black cat 1897 07 v2 n10.pdf/17 104 219649
3578761 Page:Black cat 1897 07 v2 n10.pdf/43 104 219649
3578762 Page:Black cat 1897 07 v2 n10.pdf/44 104 219649
3578763 The History of Tom Jones, a Foundling/Book IX 0 12084291
3578764 Page:Shakespeare of Stratford (1926) Yale.djvu/91 104 21450
[3578765 rows x 3 columns]
- :meth:`Series.map` now raises when
arg
is dict butna_action
is not eitherNone
or'ignore'
(:issue:`46588`) - :meth:`MultiIndex.to_frame` now supports the argument
allow_duplicates
and raises on duplicate labels if it is missing or False (:issue:`45245`) - :class:`.StringArray` now accepts array-likes containing nan-likes (
None
,np.nan
) for thevalues
parameter in its constructor in addition to strings and :attr:`pandas.NA`. (:issue:`40839`) - Improved the rendering of
categories
in :class:`CategoricalIndex` (:issue:`45218`) - :meth:`DataFrame.plot` will now allow the
subplots
parameter to be a list of iterables specifying column groups, so that columns may be grouped together in the same subplot (:issue:`29688`). - :meth:`to_numeric` now preserves float64 arrays when downcasting would generate values not representable in float32 (:issue:`43693`)
- :meth:`Series.reset_index` and :meth:`DataFrame.reset_index` now support the argument
allow_duplicates
(:issue:`44410`) - :meth:`.GroupBy.min` and :meth:`.GroupBy.max` now supports Numba execution with the
engine
keyword (:issue:`45428`) - :func:`read_csv` now supports
defaultdict
as adtype
parameter (:issue:`41574`) - :meth:`DataFrame.rolling` and :meth:`Series.rolling` now support a
step
parameter with fixed-length windows (:issue:`15354`) - Implemented a
bool
-dtype :class:`Index`, passing a bool-dtype array-like topd.Index
will now retainbool
dtype instead of casting toobject
(:issue:`45061`) - Implemented a complex-dtype :class:`Index`, passing a complex-dtype array-like to
pd.Index
will now retain complex dtype instead of casting toobject
(:issue:`45845`) - :class:`Series` and :class:`DataFrame` with :class:`IntegerDtype` now supports bitwise operations (:issue:`34463`)
- Add
milliseconds
field support for :class:`.DateOffset` (:issue:`43371`) - :meth:`DataFrame.where` tries to maintain dtype of :class:`DataFrame` if fill value can be cast without loss of precision (:issue:`45582`)
- :meth:`DataFrame.reset_index` now accepts a
names
argument which renames the index names (:issue:`6878`) - :func:`concat` now raises when
levels
is given butkeys
is None (:issue:`46653`) - :func:`concat` now raises when
levels
contains duplicate values (:issue:`46653`) - Added
numeric_only
argument to :meth:`DataFrame.corr`, :meth:`DataFrame.corrwith`, :meth:`DataFrame.cov`, :meth:`DataFrame.idxmin`, :meth:`DataFrame.idxmax`, :meth:`.DataFrameGroupBy.idxmin`, :meth:`.DataFrameGroupBy.idxmax`, :meth:`.GroupBy.var`, :meth:`.GroupBy.std`, :meth:`.GroupBy.sem`, and :meth:`.DataFrameGroupBy.quantile` (:issue:`46560`) - A :class:`errors.PerformanceWarning` is now thrown when using
string[pyarrow]
dtype with methods that don't dispatch topyarrow.compute
methods (:issue:`42613`, :issue:`46725`) - Added
validate
argument to :meth:`DataFrame.join` (:issue:`46622`) - A :class:`errors.PerformanceWarning` is now thrown when using
string[pyarrow]
dtype with methods that don't dispatch topyarrow.compute
methods (:issue:`42613`) - Added
numeric_only
argument to :meth:`Resampler.sum`, :meth:`Resampler.prod`, :meth:`Resampler.min`, :meth:`Resampler.max`, :meth:`Resampler.first`, and :meth:`Resampler.last` (:issue:`46442`) times
argument in :class:`.ExponentialMovingWindow` now acceptsnp.timedelta64
(:issue:`47003`)- :class:`.DataError`, :class:`.SpecificationError`, :class:`.SettingWithCopyError`, :class:`.SettingWithCopyWarning`, :class:`.NumExprClobberingError`, :class:`.UndefinedVariableError`, :class:`.IndexingError`, :class:`.PyperclipException`, :class:`.PyperclipWindowsException`, :class:`.CSSWarning`, :class:`.PossibleDataLossError`, :class:`.ClosedFileError`, :class:`.IncompatibilityWarning`, :class:`.AttributeConflictWarning`, :class:`.DatabaseError`, :class:`.PossiblePrecisionLoss`, :class:`.ValueLabelTypeMismatch`, :class:`.InvalidColumnName`, and :class:`.CategoricalConversionWarning` are now exposed in
pandas.errors
(:issue:`27656`) - Added
check_like
argument to :func:`testing.assert_series_equal` (:issue:`47247`) - Add support for :meth:`.GroupBy.ohlc` for extension array dtypes (:issue:`37493`)
- Allow reading compressed SAS files with :func:`read_sas` (e.g.,
.sas7bdat.gz
files) - :func:`pandas.read_html` now supports extracting links from table cells (:issue:`13141`)
- :meth:`DatetimeIndex.astype` now supports casting timezone-naive indexes to
datetime64[s]
,datetime64[ms]
, anddatetime64[us]
, and timezone-aware indexes to the correspondingdatetime64[unit, tzname]
dtypes (:issue:`47579`) - :class:`Series` reducers (e.g.
min
,max
,sum
,mean
) will now successfully operate when the dtype is numeric andnumeric_only=True
is provided; previously this would raise aNotImplementedError
(:issue:`47500`) - :meth:`RangeIndex.union` now can return a :class:`RangeIndex` instead of a :class:`Int64Index` if the resulting values are equally spaced (:issue:`47557`, :issue:`43885`)
- :meth:`DataFrame.compare` now accepts an argument
result_names
to allow the user to specify the result's names of both left and right DataFrame which are being compared. This is by default'self'
and'other'
(:issue:`44354`) - :meth:`DataFrame.quantile` gained a
method
argument that can accepttable
to evaluate multi-column quantiles (:issue:`43881`) - :class:`Interval` now supports checking whether one interval is contained by another interval (:issue:`46613`)
- Added
copy
keyword to :meth:`Series.set_axis` and :meth:`DataFrame.set_axis` to allow user to set axis on a new object without necessarily copying the underlying data (:issue:`47932`) - The method :meth:`.ExtensionArray.factorize` accepts
use_na_sentinel=False
for determining how null values are to be treated (:issue:`46601`) - The
Dockerfile
now installs a dedicatedpandas-dev
virtual environment for pandas development instead of using thebase
environment (:issue:`48427`)
These are bug fixes that might have notable behavior changes.
A transform is an operation whose result has the same size as its input. When the
result is a :class:`DataFrame` or :class:`Series`, it is also required that the
index of the result matches that of the input. In pandas 1.4, using
:meth:`.DataFrameGroupBy.transform` or :meth:`.SeriesGroupBy.transform` with null
values in the groups and dropna=True
gave incorrect results. Demonstrated by the
examples below, the incorrect results either contained incorrect values, or the result
did not have the same index as the input.
.. ipython:: python df = pd.DataFrame({'a': [1, 1, np.nan], 'b': [2, 3, 4]})
Old behavior:
In [3]: # Value in the last row should be np.nan
df.groupby('a', dropna=True).transform('sum')
Out[3]:
b
0 5
1 5
2 5
In [3]: # Should have one additional row with the value np.nan
df.groupby('a', dropna=True).transform(lambda x: x.sum())
Out[3]:
b
0 5
1 5
In [3]: # The value in the last row is np.nan interpreted as an integer
df.groupby('a', dropna=True).transform('ffill')
Out[3]:
b
0 2
1 3
2 -9223372036854775808
In [3]: # Should have one additional row with the value np.nan
df.groupby('a', dropna=True).transform(lambda x: x)
Out[3]:
b
0 2
1 3
New behavior:
.. ipython:: python df.groupby('a', dropna=True).transform('sum') df.groupby('a', dropna=True).transform(lambda x: x.sum()) df.groupby('a', dropna=True).transform('ffill') df.groupby('a', dropna=True).transform(lambda x: x)
:meth:`DataFrame.to_json`, :meth:`Series.to_json`, and :meth:`Index.to_json` would incorrectly localize DatetimeArrays/DatetimeIndexes with tz-naive Timestamps to UTC. (:issue:`38760`)
Note that this patch does not fix the localization of tz-aware Timestamps to UTC upon serialization. (Related issue :issue:`12997`)
Old Behavior
.. ipython:: python index = pd.date_range( start='2020-12-28 00:00:00', end='2020-12-28 02:00:00', freq='1H', ) a = pd.Series( data=range(3), index=index, )
In [4]: a.to_json(date_format='iso')
Out[4]: '{"2020-12-28T00:00:00.000Z":0,"2020-12-28T01:00:00.000Z":1,"2020-12-28T02:00:00.000Z":2}'
In [5]: pd.read_json(a.to_json(date_format='iso'), typ="series").index == a.index
Out[5]: array([False, False, False])
New Behavior
.. ipython:: python a.to_json(date_format='iso') # Roundtripping now works pd.read_json(a.to_json(date_format='iso'), typ="series").index == a.index
Calling :meth:`.DataFrameGroupBy.value_counts` with observed=True
would incorrectly drop non-observed categories of non-grouping columns (:issue:`46357`).
In [6]: df = pd.DataFrame(["a", "b", "c"], dtype="category").iloc[0:2]
In [7]: df
Out[7]:
0
0 a
1 b
Old Behavior
In [8]: df.groupby(level=0, observed=True).value_counts()
Out[8]:
0 a 1
1 b 1
dtype: int64
New Behavior
In [9]: df.groupby(level=0, observed=True).value_counts()
Out[9]:
0 a 1
1 a 0
b 1
0 b 0
c 0
1 c 0
dtype: int64
Some minimum supported versions of dependencies were updated. If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.20.3 | X | X |
mypy (dev) | 0.971 | X | |
beautifulsoup4 | 4.9.3 | X | |
blosc | 1.21.0 | X | |
bottleneck | 1.3.2 | X | |
fsspec | 2021.07.0 | X | |
hypothesis | 6.13.0 | X | |
gcsfs | 2021.07.0 | X | |
jinja2 | 3.0.0 | X | |
lxml | 4.6.3 | X | |
numba | 0.53.1 | X | |
numexpr | 2.7.3 | X | |
openpyxl | 3.0.7 | X | |
pandas-gbq | 0.15.0 | X | |
psycopg2 | 2.8.6 | X | |
pymysql | 1.0.2 | X | |
pyreadstat | 1.1.2 | X | |
pyxlsb | 1.0.8 | X | |
s3fs | 2021.08.0 | X | |
scipy | 1.7.1 | X | |
sqlalchemy | 1.4.16 | X | |
tabulate | 0.8.9 | X | |
xarray | 0.19.0 | X | |
xlsxwriter | 1.4.3 | X |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
beautifulsoup4 | 4.9.3 | X |
blosc | 1.21.0 | X |
bottleneck | 1.3.2 | X |
brotlipy | 0.7.0 | |
fastparquet | 0.4.0 | |
fsspec | 2021.08.0 | X |
html5lib | 1.1 | |
hypothesis | 6.13.0 | X |
gcsfs | 2021.08.0 | X |
jinja2 | 3.0.0 | X |
lxml | 4.6.3 | X |
matplotlib | 3.3.2 | |
numba | 0.53.1 | X |
numexpr | 2.7.3 | X |
odfpy | 1.4.1 | |
openpyxl | 3.0.7 | X |
pandas-gbq | 0.15.0 | X |
psycopg2 | 2.8.6 | X |
pyarrow | 1.0.1 | |
pymysql | 1.0.2 | X |
pyreadstat | 1.1.2 | X |
pytables | 3.6.1 | |
python-snappy | 0.6.0 | |
pyxlsb | 1.0.8 | X |
s3fs | 2021.08.0 | X |
scipy | 1.7.1 | X |
sqlalchemy | 1.4.16 | X |
tabulate | 0.8.9 | X |
tzdata | 2022a | |
xarray | 0.19.0 | X |
xlrd | 2.0.1 | |
xlsxwriter | 1.4.3 | X |
xlwt | 1.3.0 | |
zstandard | 0.15.2 |
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
- BigQuery I/O methods :func:`read_gbq` and :meth:`DataFrame.to_gbq` default to
auth_local_webserver = True
. Google has deprecated theauth_local_webserver = False
"out of band" (copy-paste) flow. Theauth_local_webserver = False
option is planned to stop working in October 2022. (:issue:`46312`) - :func:`read_json` now raises
FileNotFoundError
(previouslyValueError
) when input is a string ending in.json
,.json.gz
,.json.bz2
, etc. but no such file exists. (:issue:`29102`) - Operations with :class:`Timestamp` or :class:`Timedelta` that would previously raise
OverflowError
instead raiseOutOfBoundsDatetime
orOutOfBoundsTimedelta
where appropriate (:issue:`47268`) - When :func:`read_sas` previously returned
None
, it now returns an empty :class:`DataFrame` (:issue:`47410`) - :class:`DataFrame` constructor raises if
index
orcolumns
arguments are sets (:issue:`47215`)
Warning
In the next major version release, 2.0, several larger API changes are being considered without a formal deprecation such as
making the standard library zoneinfo the default timezone implementation instead of pytz
,
having the :class:`Index` support all data types instead of having multiple subclasses (:class:`CategoricalIndex`, :class:`Int64Index`, etc.), and more.
The changes under consideration are logged in this Github issue, and any
feedback or concerns are welcome.
In a future version, integer slicing on a :class:`Series` with a :class:`Int64Index` or :class:`RangeIndex` will be treated as label-based, not positional. This will make the behavior consistent with other :meth:`Series.__getitem__` and :meth:`Series.__setitem__` behaviors (:issue:`45162`).
For example:
.. ipython:: python ser = pd.Series([1, 2, 3, 4, 5], index=[2, 3, 5, 7, 11])
In the old behavior, ser[2:4]
treats the slice as positional:
Old behavior:
In [3]: ser[2:4]
Out[3]:
5 3
7 4
dtype: int64
In a future version, this will be treated as label-based:
Future behavior:
In [4]: ser.loc[2:4]
Out[4]:
2 1
3 2
dtype: int64
To retain the old behavior, use series.iloc[i:j]
. To get the future behavior,
use series.loc[i:j]
.
Slicing on a :class:`DataFrame` will not be affected.
:class:`ExcelWriter` attributes
All attributes of :class:`ExcelWriter` were previously documented as not
public. However some third party Excel engines documented accessing
ExcelWriter.book
or ExcelWriter.sheets
, and users were utilizing these
and possibly other attributes. Previously these attributes were not safe to use;
e.g. modifications to ExcelWriter.book
would not update ExcelWriter.sheets
and conversely. In order to support this, pandas has made some attributes public
and improved their implementations so that they may now be safely used. (:issue:`45572`)
The following attributes are now public and considered safe to access.
book
check_extension
close
date_format
datetime_format
engine
if_sheet_exists
sheets
supported_extensions
The following attributes have been deprecated. They now raise a FutureWarning
when accessed and will be removed in a future version. Users should be aware
that their usage is considered unsafe, and can lead to unexpected results.
cur_sheet
handles
path
save
write_cells
See the documentation of :class:`ExcelWriter` for further details.
Using group_keys
with transformers in :meth:`.GroupBy.apply`
In previous versions of pandas, if it was inferred that the function passed to
:meth:`.GroupBy.apply` was a transformer (i.e. the resulting index was equal to
the input index), the group_keys
argument of :meth:`DataFrame.groupby` and
:meth:`Series.groupby` was ignored and the group keys would never be added to
the index of the result. In the future, the group keys will be added to the index
when the user specifies group_keys=True
.
As group_keys=True
is the default value of :meth:`DataFrame.groupby` and
:meth:`Series.groupby`, not specifying group_keys
with a transformer will
raise a FutureWarning
. This can be silenced and the previous behavior
retained by specifying group_keys=False
.
Most of the time setting values with :meth:`DataFrame.iloc` attempts to set values inplace, only falling back to inserting a new array if necessary. There are some cases where this rule is not followed, for example when setting an entire column from an array with different dtype:
.. ipython:: python df = pd.DataFrame({'price': [11.1, 12.2]}, index=['book1', 'book2']) original_prices = df['price'] new_prices = np.array([98, 99])
Old behavior:
In [3]: df.iloc[:, 0] = new_prices
In [4]: df.iloc[:, 0]
Out[4]:
book1 98
book2 99
Name: price, dtype: int64
In [5]: original_prices
Out[5]:
book1 11.1
book2 12.2
Name: price, float: 64
This behavior is deprecated. In a future version, setting an entire column with iloc will attempt to operate inplace.
Future behavior:
In [3]: df.iloc[:, 0] = new_prices
In [4]: df.iloc[:, 0]
Out[4]:
book1 98.0
book2 99.0
Name: price, dtype: float64
In [5]: original_prices
Out[5]:
book1 98.0
book2 99.0
Name: price, dtype: float64
To get the old behavior, use :meth:`DataFrame.__setitem__` directly:
In [3]: df[df.columns[0]] = new_prices
In [4]: df.iloc[:, 0]
Out[4]
book1 98
book2 99
Name: price, dtype: int64
In [5]: original_prices
Out[5]:
book1 11.1
book2 12.2
Name: price, dtype: float64
To get the old behaviour when df.columns
is not unique and you want to
change a single column by index, you can use :meth:`DataFrame.isetitem`, which
has been added in pandas 1.5:
In [3]: df_with_duplicated_cols = pd.concat([df, df], axis='columns')
In [3]: df_with_duplicated_cols.isetitem(0, new_prices)
In [4]: df_with_duplicated_cols.iloc[:, 0]
Out[4]:
book1 98
book2 99
Name: price, dtype: int64
In [5]: original_prices
Out[5]:
book1 11.1
book2 12.2
Name: 0, dtype: float64
Across the :class:`DataFrame`, :class:`.DataFrameGroupBy`, and :class:`.Resampler` operations such as
min
, sum
, and idxmax
, the default
value of the numeric_only
argument, if it exists at all, was inconsistent.
Furthermore, operations with the default value None
can lead to surprising
results. (:issue:`46560`)
In [1]: df = pd.DataFrame({"a": [1, 2], "b": ["x", "y"]})
In [2]: # Reading the next line without knowing the contents of df, one would
# expect the result to contain the products for both columns a and b.
df[["a", "b"]].prod()
Out[2]:
a 2
dtype: int64
To avoid this behavior, the specifying the value numeric_only=None
has been
deprecated, and will be removed in a future version of pandas. In the future,
all operations with a numeric_only
argument will default to False
. Users
should either call the operation only with columns that can be operated on, or
specify numeric_only=True
to operate only on Boolean, integer, and float columns.
In order to support the transition to the new behavior, the following methods have
gained the numeric_only
argument.
- :meth:`DataFrame.corr`
- :meth:`DataFrame.corrwith`
- :meth:`DataFrame.cov`
- :meth:`DataFrame.idxmin`
- :meth:`DataFrame.idxmax`
- :meth:`.DataFrameGroupBy.cummin`
- :meth:`.DataFrameGroupBy.cummax`
- :meth:`.DataFrameGroupBy.idxmin`
- :meth:`.DataFrameGroupBy.idxmax`
- :meth:`.GroupBy.var`
- :meth:`.GroupBy.std`
- :meth:`.GroupBy.sem`
- :meth:`.DataFrameGroupBy.quantile`
- :meth:`.Resampler.mean`
- :meth:`.Resampler.median`
- :meth:`.Resampler.sem`
- :meth:`.Resampler.std`
- :meth:`.Resampler.var`
- :meth:`DataFrame.rolling` operations
- :meth:`DataFrame.expanding` operations
- :meth:`DataFrame.ewm` operations
- Deprecated the keyword
line_terminator
in :meth:`DataFrame.to_csv` and :meth:`Series.to_csv`, uselineterminator
instead; this is for consistency with :func:`read_csv` and the standard library 'csv' module (:issue:`9568`) - Deprecated behavior of :meth:`SparseArray.astype`, :meth:`Series.astype`, and :meth:`DataFrame.astype` with :class:`SparseDtype` when passing a non-sparse
dtype
. In a future version, this will cast to that non-sparse dtype instead of wrapping it in a :class:`SparseDtype` (:issue:`34457`) - Deprecated behavior of :meth:`DatetimeIndex.intersection` and :meth:`DatetimeIndex.symmetric_difference` (
union
behavior was already deprecated in version 1.3.0) with mixed time zones; in a future version both will be cast to UTC instead of object dtype (:issue:`39328`, :issue:`45357`) - Deprecated :meth:`DataFrame.iteritems`, :meth:`Series.iteritems`, :meth:`HDFStore.iteritems` in favor of :meth:`DataFrame.items`, :meth:`Series.items`, :meth:`HDFStore.items` (:issue:`45321`)
- Deprecated :meth:`Series.is_monotonic` and :meth:`Index.is_monotonic` in favor of :meth:`Series.is_monotonic_increasing` and :meth:`Index.is_monotonic_increasing` (:issue:`45422`, :issue:`21335`)
- Deprecated behavior of :meth:`DatetimeIndex.astype`, :meth:`TimedeltaIndex.astype`, :meth:`PeriodIndex.astype` when converting to an integer dtype other than
int64
. In a future version, these will convert to exactly the specified dtype (instead of alwaysint64
) and will raise if the conversion overflows (:issue:`45034`) - Deprecated the
__array_wrap__
method of DataFrame and Series, rely on standard numpy ufuncs instead (:issue:`45451`) - Deprecated treating float-dtype data as wall-times when passed with a timezone to :class:`Series` or :class:`DatetimeIndex` (:issue:`45573`)
- Deprecated the behavior of :meth:`Series.fillna` and :meth:`DataFrame.fillna` with
timedelta64[ns]
dtype and incompatible fill value; in a future version this will cast to a common dtype (usually object) instead of raising, matching the behavior of other dtypes (:issue:`45746`) - Deprecated the
warn
parameter in :func:`infer_freq` (:issue:`45947`) - Deprecated allowing non-keyword arguments in :meth:`.ExtensionArray.argsort` (:issue:`46134`)
- Deprecated treating all-bool
object
-dtype columns as bool-like in :meth:`DataFrame.any` and :meth:`DataFrame.all` withbool_only=True
, explicitly cast to bool instead (:issue:`46188`) - Deprecated behavior of method :meth:`DataFrame.quantile`, attribute
numeric_only
will default False. Including datetime/timedelta columns in the result (:issue:`7308`). - Deprecated :attr:`Timedelta.freq` and :attr:`Timedelta.is_populated` (:issue:`46430`)
- Deprecated :attr:`Timedelta.delta` (:issue:`46476`)
- Deprecated passing arguments as positional in :meth:`DataFrame.any` and :meth:`Series.any` (:issue:`44802`)
- Deprecated passing positional arguments to :meth:`DataFrame.pivot` and :func:`pivot` except
data
(:issue:`30228`) - Deprecated the methods :meth:`DataFrame.mad`, :meth:`Series.mad`, and the corresponding groupby methods (:issue:`11787`)
- Deprecated positional arguments to :meth:`Index.join` except for
other
, use keyword-only arguments instead of positional arguments (:issue:`46518`) - Deprecated positional arguments to :meth:`StringMethods.rsplit` and :meth:`StringMethods.split` except for
pat
, use keyword-only arguments instead of positional arguments (:issue:`47423`) - Deprecated indexing on a timezone-naive :class:`DatetimeIndex` using a string representing a timezone-aware datetime (:issue:`46903`, :issue:`36148`)
- Deprecated allowing
unit="M"
orunit="Y"
in :class:`Timestamp` constructor with a non-round float value (:issue:`47267`) - Deprecated the
display.column_space
global configuration option (:issue:`7576`) - Deprecated the argument
na_sentinel
in :func:`factorize`, :meth:`Index.factorize`, and :meth:`.ExtensionArray.factorize`; passuse_na_sentinel=True
instead to use the sentinel-1
for NaN values anduse_na_sentinel=False
instead ofna_sentinel=None
to encode NaN values (:issue:`46910`) - Deprecated :meth:`DataFrameGroupBy.transform` not aligning the result when the UDF returned DataFrame (:issue:`45648`)
- Clarified warning from :func:`to_datetime` when delimited dates can't be parsed in accordance to specified
dayfirst
argument (:issue:`46210`) - Emit warning from :func:`to_datetime` when delimited dates can't be parsed in accordance to specified
dayfirst
argument even for dates where leading zero is omitted (e.g.31/1/2001
) (:issue:`47880`) - Deprecated :class:`Series` and :class:`Resampler` reducers (e.g.
min
,max
,sum
,mean
) raising aNotImplementedError
when the dtype is non-numric andnumeric_only=True
is provided; this will raise aTypeError
in a future version (:issue:`47500`) - Deprecated :meth:`Series.rank` returning an empty result when the dtype is non-numeric and
numeric_only=True
is provided; this will raise aTypeError
in a future version (:issue:`47500`) - Deprecated argument
errors
for :meth:`Series.mask`, :meth:`Series.where`, :meth:`DataFrame.mask`, and :meth:`DataFrame.where` aserrors
had no effect on this methods (:issue:`47728`) - Deprecated arguments
*args
and**kwargs
in :class:`Rolling`, :class:`Expanding`, and :class:`ExponentialMovingWindow` ops. (:issue:`47836`) - Deprecated the
inplace
keyword in :meth:`Categorical.set_ordered`, :meth:`Categorical.as_ordered`, and :meth:`Categorical.as_unordered` (:issue:`37643`) - Deprecated setting a categorical's categories with
cat.categories = ['a', 'b', 'c']
, use :meth:`Categorical.rename_categories` instead (:issue:`37643`) - Deprecated unused arguments
encoding
andverbose
in :meth:`Series.to_excel` and :meth:`DataFrame.to_excel` (:issue:`47912`) - Deprecated the
inplace
keyword in :meth:`DataFrame.set_axis` and :meth:`Series.set_axis`, useobj = obj.set_axis(..., copy=False)
instead (:issue:`48130`) - Deprecated producing a single element when iterating over a :class:`DataFrameGroupBy` or a :class:`SeriesGroupBy` that has been grouped by a list of length 1; A tuple of length one will be returned instead (:issue:`42795`)
- Fixed up warning message of deprecation of :meth:`MultiIndex.lesort_depth` as public method, as the message previously referred to :meth:`MultiIndex.is_lexsorted` instead (:issue:`38701`)
- Deprecated the
sort_columns
argument in :meth:`DataFrame.plot` and :meth:`Series.plot` (:issue:`47563`). - Deprecated positional arguments for all but the first argument of :meth:`DataFrame.to_stata` and :func:`read_stata`, use keyword arguments instead (:issue:`48128`).
- Deprecated the
mangle_dupe_cols
argument in :func:`read_csv`, :func:`read_fwf`, :func:`read_table` and :func:`read_excel`. The argument was never implemented, and a new argument where the renaming pattern can be specified will be added instead (:issue:`47718`) - Deprecated allowing
dtype='datetime64'
ordtype=np.datetime64
in :meth:`Series.astype`, use "datetime64[ns]" instead (:issue:`47844`)
- Performance improvement in :meth:`DataFrame.corrwith` for column-wise (axis=0) Pearson and Spearman correlation when other is a :class:`Series` (:issue:`46174`)
- Performance improvement in :meth:`.GroupBy.transform` for some user-defined DataFrame -> Series functions (:issue:`45387`)
- Performance improvement in :meth:`DataFrame.duplicated` when subset consists of only one column (:issue:`45236`)
- Performance improvement in :meth:`.GroupBy.diff` (:issue:`16706`)
- Performance improvement in :meth:`.GroupBy.transform` when broadcasting values for user-defined functions (:issue:`45708`)
- Performance improvement in :meth:`.GroupBy.transform` for user-defined functions when only a single group exists (:issue:`44977`)
- Performance improvement in :meth:`.GroupBy.apply` when grouping on a non-unique unsorted index (:issue:`46527`)
- Performance improvement in :meth:`DataFrame.loc` and :meth:`Series.loc` for tuple-based indexing of a :class:`MultiIndex` (:issue:`45681`, :issue:`46040`, :issue:`46330`)
- Performance improvement in :meth:`.GroupBy.var` with
ddof
other than one (:issue:`48152`) - Performance improvement in :meth:`DataFrame.to_records` when the index is a :class:`MultiIndex` (:issue:`47263`)
- Performance improvement in :attr:`MultiIndex.values` when the MultiIndex contains levels of type DatetimeIndex, TimedeltaIndex or ExtensionDtypes (:issue:`46288`)
- Performance improvement in :func:`merge` when left and/or right are empty (:issue:`45838`)
- Performance improvement in :meth:`DataFrame.join` when left and/or right are empty (:issue:`46015`)
- Performance improvement in :meth:`DataFrame.reindex` and :meth:`Series.reindex` when target is a :class:`MultiIndex` (:issue:`46235`)
- Performance improvement when setting values in a pyarrow backed string array (:issue:`46400`)
- Performance improvement in :func:`factorize` (:issue:`46109`)
- Performance improvement in :class:`DataFrame` and :class:`Series` constructors for extension dtype scalars (:issue:`45854`)
- Performance improvement in :func:`read_excel` when
nrows
argument provided (:issue:`32727`) - Performance improvement in :meth:`.Styler.to_excel` when applying repeated CSS formats (:issue:`47371`)
- Performance improvement in :meth:`MultiIndex.is_monotonic_increasing` (:issue:`47458`)
- Performance improvement in :class:`BusinessHour`
str
andrepr
(:issue:`44764`) - Performance improvement in datetime arrays string formatting when one of the default strftime formats
"%Y-%m-%d %H:%M:%S"
or"%Y-%m-%d %H:%M:%S.%f"
is used. (:issue:`44764`) - Performance improvement in :meth:`Series.to_sql` and :meth:`DataFrame.to_sql` (:class:`SQLiteTable`) when processing time arrays. (:issue:`44764`)
- Performance improvements to :func:`read_sas` (:issue:`47403`, :issue:`47404`, :issue:`47405`)
- Performance improvement in
argmax
andargmin
for :class:`arrays.SparseArray` (:issue:`34197`)
- Bug in :meth:`.Categorical.view` not accepting integer dtypes (:issue:`25464`)
- Bug in :meth:`.CategoricalIndex.union` when the index's categories are integer-dtype and the index contains
NaN
values incorrectly raising instead of casting tofloat64
(:issue:`45362`) - Bug in :meth:`concat` when concatenating two (or more) unordered :class:`CategoricalIndex` variables, whose categories are permutations, yields incorrect index values (:issue:`24845`)
- Bug in :meth:`DataFrame.quantile` with datetime-like dtypes and no rows incorrectly returning
float64
dtype instead of retaining datetime-like dtype (:issue:`41544`) - Bug in :func:`to_datetime` with sequences of
np.str_
objects incorrectly raising (:issue:`32264`) - Bug in :class:`Timestamp` construction when passing datetime components as positional arguments and
tzinfo
as a keyword argument incorrectly raising (:issue:`31929`) - Bug in :meth:`Index.astype` when casting from object dtype to
timedelta64[ns]
dtype incorrectly castingnp.datetime64("NaT")
values tonp.timedelta64("NaT")
instead of raising (:issue:`45722`) - Bug in :meth:`SeriesGroupBy.value_counts` index when passing categorical column (:issue:`44324`)
- Bug in :meth:`DatetimeIndex.tz_localize` localizing to UTC failing to make a copy of the underlying data (:issue:`46460`)
- Bug in :meth:`DatetimeIndex.resolution` incorrectly returning "day" instead of "nanosecond" for nanosecond-resolution indexes (:issue:`46903`)
- Bug in :class:`Timestamp` with an integer or float value and
unit="Y"
orunit="M"
giving slightly-wrong results (:issue:`47266`) - Bug in :class:`.DatetimeArray` construction when passed another :class:`.DatetimeArray` and
freq=None
incorrectly inferring the freq from the given array (:issue:`47296`) - Bug in :func:`to_datetime` where
OutOfBoundsDatetime
would be thrown even iferrors=coerce
if there were more than 50 rows (:issue:`45319`) - Bug when adding a :class:`DateOffset` to a :class:`Series` would not add the
nanoseconds
field (:issue:`47856`)
- Bug in :func:`astype_nansafe` astype("timedelta64[ns]") fails when np.nan is included (:issue:`45798`)
- Bug in constructing a :class:`Timedelta` with a
np.timedelta64
object and aunit
sometimes silently overflowing and returning incorrect results instead of raisingOutOfBoundsTimedelta
(:issue:`46827`) - Bug in constructing a :class:`Timedelta` from a large integer or float with
unit="W"
silently overflowing and returning incorrect results instead of raisingOutOfBoundsTimedelta
(:issue:`47268`)
- Bug in :class:`Timestamp` constructor raising when passed a
ZoneInfo
tzinfo object (:issue:`46425`)
- Bug in operations with array-likes with
dtype="boolean"
and :attr:`NA` incorrectly altering the array in-place (:issue:`45421`) - Bug in arithmetic operations with nullable types without :attr:`NA` values not matching the same operation with non-nullable types (:issue:`48223`)
- Bug in
floordiv
when dividing byIntegerDtype
0
would return0
instead ofinf
(:issue:`48223`) - Bug in division,
pow
andmod
operations on array-likes withdtype="boolean"
not being like theirnp.bool_
counterparts (:issue:`46063`) - Bug in multiplying a :class:`Series` with
IntegerDtype
orFloatingDtype
by an array-like withtimedelta64[ns]
dtype incorrectly raising (:issue:`45622`) - Bug in :meth:`mean` where the optional dependency
bottleneck
causes precision loss linear in the length of the array.bottleneck
has been disabled for :meth:`mean` improving the loss to log-linear but may result in a performance decrease. (:issue:`42878`) - Bug in :func:`factorize` would convert the value
None
tonp.nan
(:issue:`46601`)
- Bug in :meth:`DataFrame.astype` not preserving subclasses (:issue:`40810`)
- Bug in constructing a :class:`Series` from a float-containing list or a floating-dtype ndarray-like (e.g.
dask.Array
) and an integer dtype raising instead of casting like we would with annp.ndarray
(:issue:`40110`) - Bug in :meth:`Float64Index.astype` to unsigned integer dtype incorrectly casting to
np.int64
dtype (:issue:`45309`) - Bug in :meth:`Series.astype` and :meth:`DataFrame.astype` from floating dtype to unsigned integer dtype failing to raise in the presence of negative values (:issue:`45151`)
- Bug in :func:`array` with
FloatingDtype
and values containing float-castable strings incorrectly raising (:issue:`45424`) - Bug when comparing string and datetime64ns objects causing
OverflowError
exception. (:issue:`45506`) - Bug in metaclass of generic abstract dtypes causing :meth:`DataFrame.apply` and :meth:`Series.apply` to raise for the built-in function
type
(:issue:`46684`) - Bug in :meth:`DataFrame.to_records` returning inconsistent numpy types if the index was a :class:`MultiIndex` (:issue:`47263`)
- Bug in :meth:`DataFrame.to_dict` for
orient="list"
ororient="index"
was not returning native types (:issue:`46751`) - Bug in :meth:`DataFrame.apply` that returns a :class:`DataFrame` instead of a :class:`Series` when applied to an empty :class:`DataFrame` and
axis=1
(:issue:`39111`) - Bug when inferring the dtype from an iterable that is not a NumPy
ndarray
consisting of all NumPy unsigned integer scalars did not result in an unsigned integer dtype (:issue:`47294`) - Bug in :meth:`DataFrame.eval` when pandas objects (e.g.
'Timestamp'
) were column names (:issue:`44603`)
- Bug in :meth:`str.startswith` and :meth:`str.endswith` when using other series as parameter _pat_. Now raises
TypeError
(:issue:`3485`) - Bug in :meth:`Series.str.zfill` when strings contain leading signs, padding '0' before the sign character rather than after as
str.zfill
from standard library (:issue:`20868`)
- Bug in :meth:`IntervalArray.__setitem__` when setting
np.nan
into an integer-backed array raisingValueError
instead ofTypeError
(:issue:`45484`) - Bug in :class:`IntervalDtype` when using datetime64[ns, tz] as a dtype string (:issue:`46999`)
- Bug in :meth:`DataFrame.iloc` where indexing a single row on a :class:`DataFrame` with a single ExtensionDtype column gave a copy instead of a view on the underlying data (:issue:`45241`)
- Bug in :meth:`DataFrame.__getitem__` returning copy when :class:`DataFrame` has duplicated columns even if a unique column is selected (:issue:`45316`, :issue:`41062`)
- Bug in :meth:`Series.align` does not create :class:`MultiIndex` with union of levels when both MultiIndexes intersections are identical (:issue:`45224`)
- Bug in setting a NA value (
None
ornp.nan
) into a :class:`Series` with int-based :class:`IntervalDtype` incorrectly casting to object dtype instead of a float-based :class:`IntervalDtype` (:issue:`45568`) - Bug in indexing setting values into an
ExtensionDtype
column withdf.iloc[:, i] = values
withvalues
having the same dtype asdf.iloc[:, i]
incorrectly inserting a new array instead of setting in-place (:issue:`33457`) - Bug in :meth:`Series.__setitem__` with a non-integer :class:`Index` when using an integer key to set a value that cannot be set inplace where a
ValueError
was raised instead of casting to a common dtype (:issue:`45070`) - Bug in :meth:`DataFrame.loc` not casting
None
toNA
when setting value as a list into :class:`DataFrame` (:issue:`47987`) - Bug in :meth:`Series.__setitem__` when setting incompatible values into a
PeriodDtype
orIntervalDtype
:class:`Series` raising when indexing with a boolean mask but coercing when indexing with otherwise-equivalent indexers; these now consistently coerce, along with :meth:`Series.mask` and :meth:`Series.where` (:issue:`45768`) - Bug in :meth:`DataFrame.where` with multiple columns with datetime-like dtypes failing to downcast results consistent with other dtypes (:issue:`45837`)
- Bug in :func:`isin` upcasting to
float64
with unsigned integer dtype and list-like argument without a dtype (:issue:`46485`) - Bug in :meth:`Series.loc.__setitem__` and :meth:`Series.loc.__getitem__` not raising when using multiple keys without using a :class:`MultiIndex` (:issue:`13831`)
- Bug in :meth:`Index.reindex` raising
AssertionError
whenlevel
was specified but no :class:`MultiIndex` was given; level is ignored now (:issue:`35132`) - Bug when setting a value too large for a :class:`Series` dtype failing to coerce to a common type (:issue:`26049`, :issue:`32878`)
- Bug in :meth:`loc.__setitem__` treating
range
keys as positional instead of label-based (:issue:`45479`) - Bug in :meth:`DataFrame.__setitem__` casting extension array dtypes to object when setting with a scalar key and :class:`DataFrame` as value (:issue:`46896`)
- Bug in :meth:`Series.__setitem__` when setting a scalar to a nullable pandas dtype would not raise a
TypeError
if the scalar could not be cast (losslessly) to the nullable type (:issue:`45404`) - Bug in :meth:`Series.__setitem__` when setting
boolean
dtype values containingNA
incorrectly raising instead of casting toboolean
dtype (:issue:`45462`) - Bug in :meth:`Series.loc` raising with boolean indexer containing
NA
when :class:`Index` did not match (:issue:`46551`) - Bug in :meth:`Series.__setitem__` where setting :attr:`NA` into a numeric-dtype :class:`Series` would incorrectly upcast to object-dtype rather than treating the value as
np.nan
(:issue:`44199`) - Bug in :meth:`DataFrame.loc` when setting values to a column and right hand side is a dictionary (:issue:`47216`)
- Bug in :meth:`Series.__setitem__` with
datetime64[ns]
dtype, an all-False
boolean mask, and an incompatible value incorrectly casting toobject
instead of retainingdatetime64[ns]
dtype (:issue:`45967`) - Bug in :meth:`Index.__getitem__` raising
ValueError
when indexer is from boolean dtype withNA
(:issue:`45806`) - Bug in :meth:`Series.__setitem__` losing precision when enlarging :class:`Series` with scalar (:issue:`32346`)
- Bug in :meth:`Series.mask` with
inplace=True
or setting values with a boolean mask with small integer dtypes incorrectly raising (:issue:`45750`) - Bug in :meth:`DataFrame.mask` with
inplace=True
andExtensionDtype
columns incorrectly raising (:issue:`45577`) - Bug in getting a column from a DataFrame with an object-dtype row index with datetime-like values: the resulting Series now preserves the exact object-dtype Index from the parent DataFrame (:issue:`42950`)
- Bug in :meth:`DataFrame.__getattribute__` raising
AttributeError
if columns have"string"
dtype (:issue:`46185`) - Bug in :meth:`DataFrame.compare` returning all
NaN
column when comparing extension array dtype and numpy dtype (:issue:`44014`) - Bug in :meth:`DataFrame.where` setting wrong values with
"boolean"
mask for numpy dtype (:issue:`44014`) - Bug in indexing on a :class:`DatetimeIndex` with a
np.str_
key incorrectly raising (:issue:`45580`) - Bug in :meth:`CategoricalIndex.get_indexer` when index contains
NaN
values, resulting in elements that are in target but not present in the index to be mapped to the index of the NaN element, instead of -1 (:issue:`45361`) - Bug in setting large integer values into :class:`Series` with
float32
orfloat16
dtype incorrectly altering these values instead of coercing tofloat64
dtype (:issue:`45844`) - Bug in :meth:`Series.asof` and :meth:`DataFrame.asof` incorrectly casting bool-dtype results to
float64
dtype (:issue:`16063`) - Bug in :meth:`NDFrame.xs`, :meth:`DataFrame.iterrows`, :meth:`DataFrame.loc` and :meth:`DataFrame.iloc` not always propagating metadata (:issue:`28283`)
- Bug in :meth:`DataFrame.sum` min_count changes dtype if input contains NaNs (:issue:`46947`)
- Bug in :class:`IntervalTree` that lead to an infinite recursion. (:issue:`46658`)
- Bug in :class:`PeriodIndex` raising
AttributeError
when indexing onNA
, rather than puttingNaT
in its place. (:issue:`46673`) - Bug in :meth:`DataFrame.at` would allow the modification of multiple columns (:issue:`48296`)
- Bug in :meth:`Series.fillna` and :meth:`DataFrame.fillna` with
downcast
keyword not being respected in some cases where there are no NA values present (:issue:`45423`) - Bug in :meth:`Series.fillna` and :meth:`DataFrame.fillna` with :class:`IntervalDtype` and incompatible value raising instead of casting to a common (usually object) dtype (:issue:`45796`)
- Bug in :meth:`Series.map` not respecting
na_action
argument if mapper is adict
or :class:`Series` (:issue:`47527`) - Bug in :meth:`DataFrame.interpolate` with object-dtype column not returning a copy with
inplace=False
(:issue:`45791`) - Bug in :meth:`DataFrame.dropna` allows to set both
how
andthresh
incompatible arguments (:issue:`46575`) - Bug in :meth:`DataFrame.fillna` ignored
axis
when :class:`DataFrame` is single block (:issue:`47713`)
- Bug in :meth:`DataFrame.loc` returning empty result when slicing a :class:`MultiIndex` with a negative step size and non-null start/stop values (:issue:`46156`)
- Bug in :meth:`DataFrame.loc` raising when slicing a :class:`MultiIndex` with a negative step size other than -1 (:issue:`46156`)
- Bug in :meth:`DataFrame.loc` raising when slicing a :class:`MultiIndex` with a negative step size and slicing a non-int labeled index level (:issue:`46156`)
- Bug in :meth:`Series.to_numpy` where multiindexed Series could not be converted to numpy arrays when an
na_value
was supplied (:issue:`45774`) - Bug in :class:`MultiIndex.equals` not commutative when only one side has extension array dtype (:issue:`46026`)
- Bug in :meth:`MultiIndex.from_tuples` cannot construct Index of empty tuples (:issue:`45608`)
- Bug in :meth:`DataFrame.to_stata` where no error is raised if the :class:`DataFrame` contains
-np.inf
(:issue:`45350`) - Bug in :func:`read_excel` results in an infinite loop with certain
skiprows
callables (:issue:`45585`) - Bug in :meth:`DataFrame.info` where a new line at the end of the output is omitted when called on an empty :class:`DataFrame` (:issue:`45494`)
- Bug in :func:`read_csv` not recognizing line break for
on_bad_lines="warn"
forengine="c"
(:issue:`41710`) - Bug in :meth:`DataFrame.to_csv` not respecting
float_format
forFloat64
dtype (:issue:`45991`) - Bug in :func:`read_csv` not respecting a specified converter to index columns in all cases (:issue:`40589`)
- Bug in :func:`read_csv` interpreting second row as :class:`Index` names even when
index_col=False
(:issue:`46569`) - Bug in :func:`read_parquet` when
engine="pyarrow"
which caused partial write to disk when column of unsupported datatype was passed (:issue:`44914`) - Bug in :func:`DataFrame.to_excel` and :class:`ExcelWriter` would raise when writing an empty DataFrame to a
.ods
file (:issue:`45793`) - Bug in :func:`read_csv` ignoring non-existing header row for
engine="python"
(:issue:`47400`) - Bug in :func:`read_excel` raising uncontrolled
IndexError
whenheader
references non-existing rows (:issue:`43143`) - Bug in :func:`read_html` where elements surrounding
<br>
were joined without a space between them (:issue:`29528`) - Bug in :func:`read_csv` when data is longer than header leading to issues with callables in
usecols
expecting strings (:issue:`46997`) - Bug in Parquet roundtrip for Interval dtype with
datetime64[ns]
subtype (:issue:`45881`) - Bug in :func:`read_excel` when reading a
.ods
file with newlines between xml elements (:issue:`45598`) - Bug in :func:`read_parquet` when
engine="fastparquet"
where the file was not closed on error (:issue:`46555`) - :meth:`to_html` now excludes the
border
attribute from<table>
elements whenborder
keyword is set toFalse
. - Bug in :func:`read_sas` with certain types of compressed SAS7BDAT files (:issue:`35545`)
- Bug in :func:`read_excel` not forward filling :class:`MultiIndex` when no names were given (:issue:`47487`)
- Bug in :func:`read_sas` returned
None
rather than an empty DataFrame for SAS7BDAT files with zero rows (:issue:`18198`) - Bug in :meth:`DataFrame.to_string` using wrong missing value with extension arrays in :class:`MultiIndex` (:issue:`47986`)
- Bug in :class:`StataWriter` where value labels were always written with default encoding (:issue:`46750`)
- Bug in :class:`StataWriterUTF8` where some valid characters were removed from variable names (:issue:`47276`)
- Bug in :meth:`DataFrame.to_excel` when writing an empty dataframe with :class:`MultiIndex` (:issue:`19543`)
- Bug in :func:`read_sas` with RLE-compressed SAS7BDAT files that contain 0x40 control bytes (:issue:`31243`)
- Bug in :func:`read_sas` that scrambled column names (:issue:`31243`)
- Bug in :func:`read_sas` with RLE-compressed SAS7BDAT files that contain 0x00 control bytes (:issue:`47099`)
- Bug in :func:`read_parquet` with
use_nullable_dtypes=True
wherefloat64
dtype was returned instead of nullableFloat64
dtype (:issue:`45694`) - Bug in :meth:`DataFrame.to_json` where
PeriodDtype
would not make the serialization roundtrip when read back with :meth:`read_json` (:issue:`44720`) - Bug in :func:`read_xml` when reading XML files with Chinese character tags and would raise
XMLSyntaxError
(:issue:`47902`)
- Bug in subtraction of :class:`Period` from :class:`.PeriodArray` returning wrong results (:issue:`45999`)
- Bug in :meth:`Period.strftime` and :meth:`PeriodIndex.strftime`, directives
%l
and%u
were giving wrong results (:issue:`46252`) - Bug in inferring an incorrect
freq
when passing a string to :class:`Period` microseconds that are a multiple of 1000 (:issue:`46811`) - Bug in constructing a :class:`Period` from a :class:`Timestamp` or
np.datetime64
object with non-zero nanoseconds andfreq="ns"
incorrectly truncating the nanoseconds (:issue:`46811`) - Bug in adding
np.timedelta64("NaT", "ns")
to a :class:`Period` with a timedelta-like freq incorrectly raisingIncompatibleFrequency
instead of returningNaT
(:issue:`47196`) - Bug in adding an array of integers to an array with :class:`PeriodDtype` giving incorrect results when
dtype.freq.n > 1
(:issue:`47209`) - Bug in subtracting a :class:`Period` from an array with :class:`PeriodDtype` returning incorrect results instead of raising
OverflowError
when the operation overflows (:issue:`47538`)
- Bug in :meth:`DataFrame.plot.barh` that prevented labeling the x-axis and
xlabel
updating the y-axis label (:issue:`45144`) - Bug in :meth:`DataFrame.plot.box` that prevented labeling the x-axis (:issue:`45463`)
- Bug in :meth:`DataFrame.boxplot` that prevented passing in
xlabel
andylabel
(:issue:`45463`) - Bug in :meth:`DataFrame.boxplot` that prevented specifying
vert=False
(:issue:`36918`) - Bug in :meth:`DataFrame.plot.scatter` that prevented specifying
norm
(:issue:`45809`) - The function :meth:`DataFrame.plot.scatter` now accepts
color
as an alias forc
andsize
as an alias fors
for consistency to other plotting functions (:issue:`44670`) - Fix showing "None" as ylabel in :meth:`Series.plot` when not setting ylabel (:issue:`46129`)
- Bug in :meth:`DataFrame.plot` that led to xticks and vertical grids being improperly placed when plotting a quarterly series (:issue:`47602`)
- Bug in :meth:`DataFrame.plot` that prevented setting y-axis label, limits and ticks for a secondary y-axis (:issue:`47753`)
- Bug in :meth:`DataFrame.resample` ignoring
closed="right"
on :class:`TimedeltaIndex` (:issue:`45414`) - Bug in :meth:`.DataFrameGroupBy.transform` fails when
func="size"
and the input DataFrame has multiple columns (:issue:`27469`) - Bug in :meth:`.DataFrameGroupBy.size` and :meth:`.DataFrameGroupBy.transform` with
func="size"
produced incorrect results whenaxis=1
(:issue:`45715`) - Bug in :meth:`.ExponentialMovingWindow.mean` with
axis=1
andengine='numba'
when the :class:`DataFrame` has more columns than rows (:issue:`46086`) - Bug when using
engine="numba"
would return the same jitted function when modifyingengine_kwargs
(:issue:`46086`) - Bug in :meth:`.DataFrameGroupBy.transform` fails when
axis=1
andfunc
is"first"
or"last"
(:issue:`45986`) - Bug in :meth:`DataFrameGroupBy.cumsum` with
skipna=False
giving incorrect results (:issue:`46216`) - Bug in :meth:`.GroupBy.sum`, :meth:`.GroupBy.prod` and :meth:`.GroupBy.cumsum` with integer dtypes losing precision (:issue:`37493`)
- Bug in :meth:`.GroupBy.cumsum` with
timedelta64[ns]
dtype failing to recognizeNaT
as a null value (:issue:`46216`) - Bug in :meth:`.GroupBy.cumsum` with integer dtypes causing overflows when sum was bigger than maximum of dtype (:issue:`37493`)
- Bug in :meth:`.GroupBy.cummin` and :meth:`.GroupBy.cummax` with nullable dtypes incorrectly altering the original data in place (:issue:`46220`)
- Bug in :meth:`DataFrame.groupby` raising error when
None
is in first level of :class:`MultiIndex` (:issue:`47348`) - Bug in :meth:`.GroupBy.cummax` with
int64
dtype with leading value being the smallest possible int64 (:issue:`46382`) - Bug in :meth:`.GroupBy.cumprod`
NaN
influences calculation in different columns withskipna=False
(:issue:`48064`) - Bug in :meth:`.GroupBy.max` with empty groups and
uint64
dtype incorrectly raisingRuntimeError
(:issue:`46408`) - Bug in :meth:`.GroupBy.apply` would fail when
func
was a string and args or kwargs were supplied (:issue:`46479`) - Bug in :meth:`SeriesGroupBy.apply` would incorrectly name its result when there was a unique group (:issue:`46369`)
- Bug in :meth:`.Rolling.sum` and :meth:`.Rolling.mean` would give incorrect result with window of same values (:issue:`42064`, :issue:`46431`)
- Bug in :meth:`.Rolling.var` and :meth:`.Rolling.std` would give non-zero result with window of same values (:issue:`42064`)
- Bug in :meth:`.Rolling.skew` and :meth:`.Rolling.kurt` would give NaN with window of same values (:issue:`30993`)
- Bug in :meth:`.Rolling.var` would segfault calculating weighted variance when window size was larger than data size (:issue:`46760`)
- Bug in :meth:`Grouper.__repr__` where
dropna
was not included. Now it is (:issue:`46754`) - Bug in :meth:`DataFrame.rolling` gives ValueError when center=True, axis=1 and win_type is specified (:issue:`46135`)
- Bug in :meth:`.DataFrameGroupBy.describe` and :meth:`.SeriesGroupBy.describe` produces inconsistent results for empty datasets (:issue:`41575`)
- Bug in :meth:`DataFrame.resample` reduction methods when used with
on
would attempt to aggregate the provided column (:issue:`47079`) - Bug in :meth:`DataFrame.groupby` and :meth:`Series.groupby` would not respect
dropna=False
when the input DataFrame/Series had a NaN values in a :class:`MultiIndex` (:issue:`46783`) - Bug in :meth:`DataFrameGroupBy.resample` raises
KeyError
when getting the result from a key list which misses the resample key (:issue:`47362`) - Bug in :meth:`DataFrame.groupby` would lose index columns when the DataFrame is empty for transforms, like fillna (:issue:`47787`)
- Bug in :meth:`DataFrame.groupby` and :meth:`Series.groupby` with
dropna=False
andsort=False
would put any null groups at the end instead the order that they are encountered (:issue:`46584`)
- Bug in :func:`concat` between a :class:`Series` with integer dtype and another with :class:`CategoricalDtype` with integer categories and containing
NaN
values casting to object dtype instead offloat64
(:issue:`45359`) - Bug in :func:`get_dummies` that selected object and categorical dtypes but not string (:issue:`44965`)
- Bug in :meth:`DataFrame.align` when aligning a :class:`MultiIndex` to a :class:`Series` with another :class:`MultiIndex` (:issue:`46001`)
- Bug in concatenation with
IntegerDtype
, orFloatingDtype
arrays where the resulting dtype did not mirror the behavior of the non-nullable dtypes (:issue:`46379`) - Bug in :func:`concat` losing dtype of columns when
join="outer"
andsort=True
(:issue:`47329`) - Bug in :func:`concat` not sorting the column names when
None
is included (:issue:`47331`) - Bug in :func:`concat` with identical key leads to error when indexing :class:`MultiIndex` (:issue:`46519`)
- Bug in :func:`pivot_table` raising
TypeError
whendropna=True
and aggregation column has extension array dtype (:issue:`47477`) - Bug in :func:`merge` raising error for
how="cross"
when usingFIPS
mode in ssl library (:issue:`48024`) - Bug in :meth:`DataFrame.join` with a list when using suffixes to join DataFrames with duplicate column names (:issue:`46396`)
- Bug in :meth:`DataFrame.pivot_table` with
sort=False
results in sorted index (:issue:`17041`) - Bug in :meth:`concat` when
axis=1
andsort=False
where the resulting Index was a :class:`Int64Index` instead of a :class:`RangeIndex` (:issue:`46675`) - Bug in :meth:`wide_to_long` raises when
stubnames
is missing in columns andi
contains string dtype column (:issue:`46044`) - Bug in :meth:`DataFrame.join` with categorical index results in unexpected reordering (:issue:`47812`)
- Bug in :meth:`Series.where` and :meth:`DataFrame.where` with
SparseDtype
failing to retain the array'sfill_value
(:issue:`45691`) - Bug in :meth:`SparseArray.unique` fails to keep original elements order (:issue:`47809`)
- Bug in :meth:`IntegerArray.searchsorted` and :meth:`FloatingArray.searchsorted` returning inconsistent results when acting on
np.nan
(:issue:`45255`)
- Bug when attempting to apply styling functions to an empty DataFrame subset (:issue:`45313`)
- Bug in :class:`CSSToExcelConverter` leading to
TypeError
when border color provided without border style forxlsxwriter
engine (:issue:`42276`) - Bug in :meth:`Styler.set_sticky` leading to white text on white background in dark mode (:issue:`46984`)
- Bug in :meth:`Styler.to_latex` causing
UnboundLocalError
whenclines="all;data"
and theDataFrame
has no rows. (:issue:`47203`) - Bug in :meth:`Styler.to_excel` when using
vertical-align: middle;
withxlsxwriter
engine (:issue:`30107`) - Bug when applying styles to a DataFrame with boolean column labels (:issue:`47838`)
- Fixed metadata propagation in :meth:`DataFrame.melt` (:issue:`28283`)
- Fixed metadata propagation in :meth:`DataFrame.explode` (:issue:`28283`)
- Bug in :func:`.assert_index_equal` with
names=True
andcheck_order=False
not checking names (:issue:`47328`)