forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_dt_accessor.py
798 lines (693 loc) · 27.7 KB
/
test_dt_accessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
import calendar
from datetime import (
date,
datetime,
time,
)
import locale
import unicodedata
import numpy as np
import pytest
import pytz
from pandas._libs.tslibs.timezones import maybe_get_tz
from pandas.errors import SettingWithCopyError
from pandas.core.dtypes.common import (
is_integer_dtype,
is_list_like,
)
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Period,
PeriodIndex,
Series,
TimedeltaIndex,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
PeriodArray,
TimedeltaArray,
)
ok_for_period = PeriodArray._datetimelike_ops
ok_for_period_methods = ["strftime", "to_timestamp", "asfreq"]
ok_for_dt = DatetimeArray._datetimelike_ops
ok_for_dt_methods = [
"to_period",
"to_pydatetime",
"tz_localize",
"tz_convert",
"normalize",
"strftime",
"round",
"floor",
"ceil",
"day_name",
"month_name",
"isocalendar",
"as_unit",
]
ok_for_td = TimedeltaArray._datetimelike_ops
ok_for_td_methods = [
"components",
"to_pytimedelta",
"total_seconds",
"round",
"floor",
"ceil",
"as_unit",
]
def get_dir(ser):
# check limited display api
results = [r for r in ser.dt.__dir__() if not r.startswith("_")]
return sorted(set(results))
class TestSeriesDatetimeValues:
def _compare(self, ser, name):
# GH 7207, 11128
# test .dt namespace accessor
def get_expected(ser, prop):
result = getattr(Index(ser._values), prop)
if isinstance(result, np.ndarray):
if is_integer_dtype(result):
result = result.astype("int64")
elif not is_list_like(result) or isinstance(result, DataFrame):
return result
return Series(result, index=ser.index, name=ser.name)
left = getattr(ser.dt, name)
right = get_expected(ser, name)
if not (is_list_like(left) and is_list_like(right)):
assert left == right
elif isinstance(left, DataFrame):
tm.assert_frame_equal(left, right)
else:
tm.assert_series_equal(left, right)
@pytest.mark.parametrize("freq", ["D", "s", "ms"])
def test_dt_namespace_accessor_datetime64(self, freq):
# GH#7207, GH#11128
# test .dt namespace accessor
# datetimeindex
dti = date_range("20130101", periods=5, freq=freq)
ser = Series(dti, name="xxx")
for prop in ok_for_dt:
# we test freq below
if prop != "freq":
self._compare(ser, prop)
for prop in ok_for_dt_methods:
getattr(ser.dt, prop)
msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.dt.to_pydatetime()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = ser.dt.tz_localize("US/Eastern")
exp_values = DatetimeIndex(ser.values).tz_localize("US/Eastern")
expected = Series(exp_values, index=ser.index, name="xxx")
tm.assert_series_equal(result, expected)
tz_result = result.dt.tz
assert str(tz_result) == "US/Eastern"
freq_result = ser.dt.freq
assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
# let's localize, then convert
result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
exp_values = (
DatetimeIndex(ser.values).tz_localize("UTC").tz_convert("US/Eastern")
)
expected = Series(exp_values, index=ser.index, name="xxx")
tm.assert_series_equal(result, expected)
def test_dt_namespace_accessor_datetime64tz(self):
# GH#7207, GH#11128
# test .dt namespace accessor
# datetimeindex with tz
dti = date_range("20130101", periods=5, tz="US/Eastern")
ser = Series(dti, name="xxx")
for prop in ok_for_dt:
# we test freq below
if prop != "freq":
self._compare(ser, prop)
for prop in ok_for_dt_methods:
getattr(ser.dt, prop)
msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.dt.to_pydatetime()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = ser.dt.tz_convert("CET")
expected = Series(ser._values.tz_convert("CET"), index=ser.index, name="xxx")
tm.assert_series_equal(result, expected)
tz_result = result.dt.tz
assert str(tz_result) == "CET"
freq_result = ser.dt.freq
assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
def test_dt_namespace_accessor_timedelta(self):
# GH#7207, GH#11128
# test .dt namespace accessor
# timedelta index
cases = [
Series(
timedelta_range("1 day", periods=5), index=list("abcde"), name="xxx"
),
Series(timedelta_range("1 day 01:23:45", periods=5, freq="s"), name="xxx"),
Series(
timedelta_range("2 days 01:23:45.012345", periods=5, freq="ms"),
name="xxx",
),
]
for ser in cases:
for prop in ok_for_td:
# we test freq below
if prop != "freq":
self._compare(ser, prop)
for prop in ok_for_td_methods:
getattr(ser.dt, prop)
result = ser.dt.components
assert isinstance(result, DataFrame)
tm.assert_index_equal(result.index, ser.index)
result = ser.dt.to_pytimedelta()
assert isinstance(result, np.ndarray)
assert result.dtype == object
result = ser.dt.total_seconds()
assert isinstance(result, Series)
assert result.dtype == "float64"
freq_result = ser.dt.freq
assert freq_result == TimedeltaIndex(ser.values, freq="infer").freq
def test_dt_namespace_accessor_period(self):
# GH#7207, GH#11128
# test .dt namespace accessor
# periodindex
pi = period_range("20130101", periods=5, freq="D")
ser = Series(pi, name="xxx")
for prop in ok_for_period:
# we test freq below
if prop != "freq":
self._compare(ser, prop)
for prop in ok_for_period_methods:
getattr(ser.dt, prop)
freq_result = ser.dt.freq
assert freq_result == PeriodIndex(ser.values).freq
def test_dt_namespace_accessor_index_and_values(self):
# both
index = date_range("20130101", periods=3, freq="D")
dti = date_range("20140204", periods=3, freq="s")
ser = Series(dti, index=index, name="xxx")
exp = Series(
np.array([2014, 2014, 2014], dtype="int32"), index=index, name="xxx"
)
tm.assert_series_equal(ser.dt.year, exp)
exp = Series(np.array([2, 2, 2], dtype="int32"), index=index, name="xxx")
tm.assert_series_equal(ser.dt.month, exp)
exp = Series(np.array([0, 1, 2], dtype="int32"), index=index, name="xxx")
tm.assert_series_equal(ser.dt.second, exp)
exp = Series([ser[0]] * 3, index=index, name="xxx")
tm.assert_series_equal(ser.dt.normalize(), exp)
def test_dt_accessor_limited_display_api(self):
# tznaive
ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
results = get_dir(ser)
tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
# tzaware
ser = Series(date_range("2015-01-01", "2016-01-01", freq="T"), name="xxx")
ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
results = get_dir(ser)
tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
# Period
ser = Series(
period_range("20130101", periods=5, freq="D", name="xxx").astype(object)
)
results = get_dir(ser)
tm.assert_almost_equal(
results, sorted(set(ok_for_period + ok_for_period_methods))
)
def test_dt_accessor_ambiguous_freq_conversions(self):
# GH#11295
# ambiguous time error on the conversions
ser = Series(date_range("2015-01-01", "2016-01-01", freq="T"), name="xxx")
ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
exp_values = date_range(
"2015-01-01", "2016-01-01", freq="T", tz="UTC"
).tz_convert("America/Chicago")
# freq not preserved by tz_localize above
exp_values = exp_values._with_freq(None)
expected = Series(exp_values, name="xxx")
tm.assert_series_equal(ser, expected)
def test_dt_accessor_not_writeable(self, using_copy_on_write):
# no setting allowed
ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
with pytest.raises(ValueError, match="modifications"):
ser.dt.hour = 5
# trying to set a copy
msg = "modifications to a property of a datetimelike.+not supported"
with pd.option_context("chained_assignment", "raise"):
if using_copy_on_write:
with tm.raises_chained_assignment_error():
ser.dt.hour[0] = 5
else:
with pytest.raises(SettingWithCopyError, match=msg):
ser.dt.hour[0] = 5
@pytest.mark.parametrize(
"method, dates",
[
["round", ["2012-01-02", "2012-01-02", "2012-01-01"]],
["floor", ["2012-01-01", "2012-01-01", "2012-01-01"]],
["ceil", ["2012-01-02", "2012-01-02", "2012-01-02"]],
],
)
def test_dt_round(self, method, dates):
# round
ser = Series(
pd.to_datetime(
["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
),
name="xxx",
)
result = getattr(ser.dt, method)("D")
expected = Series(pd.to_datetime(dates), name="xxx")
tm.assert_series_equal(result, expected)
def test_dt_round_tz(self):
ser = Series(
pd.to_datetime(
["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
),
name="xxx",
)
result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern").dt.round("D")
exp_values = pd.to_datetime(
["2012-01-01", "2012-01-01", "2012-01-01"]
).tz_localize("US/Eastern")
expected = Series(exp_values, name="xxx")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["ceil", "round", "floor"])
def test_dt_round_tz_ambiguous(self, method):
# GH 18946 round near "fall back" DST
df1 = DataFrame(
[
pd.to_datetime("2017-10-29 02:00:00+02:00", utc=True),
pd.to_datetime("2017-10-29 02:00:00+01:00", utc=True),
pd.to_datetime("2017-10-29 03:00:00+01:00", utc=True),
],
columns=["date"],
)
df1["date"] = df1["date"].dt.tz_convert("Europe/Madrid")
# infer
result = getattr(df1.date.dt, method)("H", ambiguous="infer")
expected = df1["date"]
tm.assert_series_equal(result, expected)
# bool-array
result = getattr(df1.date.dt, method)("H", ambiguous=[True, False, False])
tm.assert_series_equal(result, expected)
# NaT
result = getattr(df1.date.dt, method)("H", ambiguous="NaT")
expected = df1["date"].copy()
expected.iloc[0:2] = pd.NaT
tm.assert_series_equal(result, expected)
# raise
with tm.external_error_raised(pytz.AmbiguousTimeError):
getattr(df1.date.dt, method)("H", ambiguous="raise")
@pytest.mark.parametrize(
"method, ts_str, freq",
[
["ceil", "2018-03-11 01:59:00-0600", "5min"],
["round", "2018-03-11 01:59:00-0600", "5min"],
["floor", "2018-03-11 03:01:00-0500", "2H"],
],
)
def test_dt_round_tz_nonexistent(self, method, ts_str, freq):
# GH 23324 round near "spring forward" DST
ser = Series([pd.Timestamp(ts_str, tz="America/Chicago")])
result = getattr(ser.dt, method)(freq, nonexistent="shift_forward")
expected = Series([pd.Timestamp("2018-03-11 03:00:00", tz="America/Chicago")])
tm.assert_series_equal(result, expected)
result = getattr(ser.dt, method)(freq, nonexistent="NaT")
expected = Series([pd.NaT]).dt.tz_localize(result.dt.tz)
tm.assert_series_equal(result, expected)
with pytest.raises(pytz.NonExistentTimeError, match="2018-03-11 02:00:00"):
getattr(ser.dt, method)(freq, nonexistent="raise")
def test_dt_namespace_accessor_categorical(self):
# GH 19468
dti = DatetimeIndex(["20171111", "20181212"]).repeat(2)
ser = Series(pd.Categorical(dti), name="foo")
result = ser.dt.year
expected = Series([2017, 2017, 2018, 2018], dtype="int32", name="foo")
tm.assert_series_equal(result, expected)
def test_dt_tz_localize_categorical(self, tz_aware_fixture):
# GH 27952
tz = tz_aware_fixture
datetimes = Series(
["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns]"
)
categorical = datetimes.astype("category")
result = categorical.dt.tz_localize(tz)
expected = datetimes.dt.tz_localize(tz)
tm.assert_series_equal(result, expected)
def test_dt_tz_convert_categorical(self, tz_aware_fixture):
# GH 27952
tz = tz_aware_fixture
datetimes = Series(
["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns, MET]"
)
categorical = datetimes.astype("category")
result = categorical.dt.tz_convert(tz)
expected = datetimes.dt.tz_convert(tz)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("accessor", ["year", "month", "day"])
def test_dt_other_accessors_categorical(self, accessor):
# GH 27952
datetimes = Series(
["2018-01-01", "2018-01-01", "2019-01-02"], dtype="datetime64[ns]"
)
categorical = datetimes.astype("category")
result = getattr(categorical.dt, accessor)
expected = getattr(datetimes.dt, accessor)
tm.assert_series_equal(result, expected)
def test_dt_accessor_no_new_attributes(self):
# https://github.com/pandas-dev/pandas/issues/10673
ser = Series(date_range("20130101", periods=5, freq="D"))
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
ser.dt.xlabel = "a"
# error: Unsupported operand types for + ("List[None]" and "List[str]")
@pytest.mark.parametrize(
"time_locale", [None] + tm.get_locales() # type: ignore[operator]
)
def test_dt_accessor_datetime_name_accessors(self, time_locale):
# Test Monday -> Sunday and January -> December, in that sequence
if time_locale is None:
# If the time_locale is None, day-name and month_name should
# return the english attributes
expected_days = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
]
expected_months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
]
else:
with tm.set_locale(time_locale, locale.LC_TIME):
expected_days = calendar.day_name[:]
expected_months = calendar.month_name[1:]
ser = Series(date_range(freq="D", start=datetime(1998, 1, 1), periods=365))
english_days = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",
]
for day, name, eng_name in zip(range(4, 11), expected_days, english_days):
name = name.capitalize()
assert ser.dt.day_name(locale=time_locale)[day] == name
assert ser.dt.day_name(locale=None)[day] == eng_name
ser = pd.concat([ser, Series([pd.NaT])])
assert np.isnan(ser.dt.day_name(locale=time_locale).iloc[-1])
ser = Series(date_range(freq="M", start="2012", end="2013"))
result = ser.dt.month_name(locale=time_locale)
expected = Series([month.capitalize() for month in expected_months])
# work around https://github.com/pandas-dev/pandas/issues/22342
result = result.str.normalize("NFD")
expected = expected.str.normalize("NFD")
tm.assert_series_equal(result, expected)
for s_date, expected in zip(ser, expected_months):
result = s_date.month_name(locale=time_locale)
expected = expected.capitalize()
result = unicodedata.normalize("NFD", result)
expected = unicodedata.normalize("NFD", expected)
assert result == expected
ser = pd.concat([ser, Series([pd.NaT])])
assert np.isnan(ser.dt.month_name(locale=time_locale).iloc[-1])
def test_strftime(self):
# GH 10086
ser = Series(date_range("20130101", periods=5))
result = ser.dt.strftime("%Y/%m/%d")
expected = Series(
["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
)
tm.assert_series_equal(result, expected)
ser = Series(date_range("2015-02-03 11:22:33.4567", periods=5))
result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
expected = Series(
[
"2015/02/03 11-22-33",
"2015/02/04 11-22-33",
"2015/02/05 11-22-33",
"2015/02/06 11-22-33",
"2015/02/07 11-22-33",
]
)
tm.assert_series_equal(result, expected)
ser = Series(period_range("20130101", periods=5))
result = ser.dt.strftime("%Y/%m/%d")
expected = Series(
["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
)
tm.assert_series_equal(result, expected)
ser = Series(period_range("2015-02-03 11:22:33.4567", periods=5, freq="s"))
result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
expected = Series(
[
"2015/02/03 11-22-33",
"2015/02/03 11-22-34",
"2015/02/03 11-22-35",
"2015/02/03 11-22-36",
"2015/02/03 11-22-37",
]
)
tm.assert_series_equal(result, expected)
def test_strftime_dt64_days(self):
ser = Series(date_range("20130101", periods=5))
ser.iloc[0] = pd.NaT
result = ser.dt.strftime("%Y/%m/%d")
expected = Series(
[np.nan, "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
)
tm.assert_series_equal(result, expected)
datetime_index = date_range("20150301", periods=5)
result = datetime_index.strftime("%Y/%m/%d")
expected = Index(
["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
dtype=np.object_,
)
# dtype may be S10 or U10 depending on python version
tm.assert_index_equal(result, expected)
def test_strftime_period_days(self):
period_index = period_range("20150301", periods=5)
result = period_index.strftime("%Y/%m/%d")
expected = Index(
["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
dtype="=U10",
)
tm.assert_index_equal(result, expected)
def test_strftime_dt64_microsecond_resolution(self):
ser = Series([datetime(2013, 1, 1, 2, 32, 59), datetime(2013, 1, 2, 14, 32, 1)])
result = ser.dt.strftime("%Y-%m-%d %H:%M:%S")
expected = Series(["2013-01-01 02:32:59", "2013-01-02 14:32:01"])
tm.assert_series_equal(result, expected)
def test_strftime_period_hours(self):
ser = Series(period_range("20130101", periods=4, freq="H"))
result = ser.dt.strftime("%Y/%m/%d %H:%M:%S")
expected = Series(
[
"2013/01/01 00:00:00",
"2013/01/01 01:00:00",
"2013/01/01 02:00:00",
"2013/01/01 03:00:00",
]
)
tm.assert_series_equal(result, expected)
def test_strftime_period_minutes(self):
ser = Series(period_range("20130101", periods=4, freq="L"))
result = ser.dt.strftime("%Y/%m/%d %H:%M:%S.%l")
expected = Series(
[
"2013/01/01 00:00:00.000",
"2013/01/01 00:00:00.001",
"2013/01/01 00:00:00.002",
"2013/01/01 00:00:00.003",
]
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
DatetimeIndex(["2019-01-01", pd.NaT]),
PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]"),
],
)
def test_strftime_nat(self, data):
# GH 29578
ser = Series(data)
result = ser.dt.strftime("%Y-%m-%d")
expected = Series(["2019-01-01", np.nan])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data", [DatetimeIndex([pd.NaT]), PeriodIndex([pd.NaT], dtype="period[D]")]
)
def test_strftime_all_nat(self, data):
# https://github.com/pandas-dev/pandas/issues/45858
ser = Series(data)
with tm.assert_produces_warning(None):
result = ser.dt.strftime("%Y-%m-%d")
expected = Series([np.nan], dtype=object)
tm.assert_series_equal(result, expected)
def test_valid_dt_with_missing_values(self):
# GH 8689
ser = Series(date_range("20130101", periods=5, freq="D"))
ser.iloc[2] = pd.NaT
for attr in ["microsecond", "nanosecond", "second", "minute", "hour", "day"]:
expected = getattr(ser.dt, attr).copy()
expected.iloc[2] = np.nan
result = getattr(ser.dt, attr)
tm.assert_series_equal(result, expected)
result = ser.dt.date
expected = Series(
[
date(2013, 1, 1),
date(2013, 1, 2),
np.nan,
date(2013, 1, 4),
date(2013, 1, 5),
],
dtype="object",
)
tm.assert_series_equal(result, expected)
result = ser.dt.time
expected = Series([time(0), time(0), np.nan, time(0), time(0)], dtype="object")
tm.assert_series_equal(result, expected)
def test_dt_accessor_api(self):
# GH 9322
from pandas.core.indexes.accessors import (
CombinedDatetimelikeProperties,
DatetimeProperties,
)
assert Series.dt is CombinedDatetimelikeProperties
ser = Series(date_range("2000-01-01", periods=3))
assert isinstance(ser.dt, DatetimeProperties)
@pytest.mark.parametrize(
"ser", [Series(np.arange(5)), Series(list("abcde")), Series(np.random.randn(5))]
)
def test_dt_accessor_invalid(self, ser):
# GH#9322 check that series with incorrect dtypes don't have attr
with pytest.raises(AttributeError, match="only use .dt accessor"):
ser.dt
assert not hasattr(ser, "dt")
def test_dt_accessor_updates_on_inplace(self):
ser = Series(date_range("2018-01-01", periods=10))
ser[2] = None
return_value = ser.fillna(pd.Timestamp("2018-01-01"), inplace=True)
assert return_value is None
result = ser.dt.date
assert result[0] == result[2]
def test_date_tz(self):
# GH11757
rng = DatetimeIndex(
["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"],
tz="US/Eastern",
)
ser = Series(rng)
expected = Series([date(2014, 4, 4), date(2014, 7, 18), date(2015, 11, 22)])
tm.assert_series_equal(ser.dt.date, expected)
tm.assert_series_equal(ser.apply(lambda x: x.date()), expected)
def test_dt_timetz_accessor(self, tz_naive_fixture):
# GH21358
tz = maybe_get_tz(tz_naive_fixture)
dtindex = DatetimeIndex(
["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"], tz=tz
)
ser = Series(dtindex)
expected = Series(
[time(23, 56, tzinfo=tz), time(21, 24, tzinfo=tz), time(22, 14, tzinfo=tz)]
)
result = ser.dt.timetz
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"input_series, expected_output",
[
[["2020-01-01"], [[2020, 1, 3]]],
[[pd.NaT], [[np.NaN, np.NaN, np.NaN]]],
[["2019-12-31", "2019-12-29"], [[2020, 1, 2], [2019, 52, 7]]],
[["2010-01-01", pd.NaT], [[2009, 53, 5], [np.NaN, np.NaN, np.NaN]]],
# see GH#36032
[["2016-01-08", "2016-01-04"], [[2016, 1, 5], [2016, 1, 1]]],
[["2016-01-07", "2016-01-01"], [[2016, 1, 4], [2015, 53, 5]]],
],
)
def test_isocalendar(self, input_series, expected_output):
result = pd.to_datetime(Series(input_series)).dt.isocalendar()
expected_frame = DataFrame(
expected_output, columns=["year", "week", "day"], dtype="UInt32"
)
tm.assert_frame_equal(result, expected_frame)
def test_hour_index(self):
dt_series = Series(
date_range(start="2021-01-01", periods=5, freq="h"),
index=[2, 6, 7, 8, 11],
dtype="category",
)
result = dt_series.dt.hour
expected = Series(
[0, 1, 2, 3, 4],
dtype="int32",
index=[2, 6, 7, 8, 11],
)
tm.assert_series_equal(result, expected)
class TestSeriesPeriodValuesDtAccessor:
@pytest.mark.parametrize(
"input_vals",
[
[Period("2016-01", freq="M"), Period("2016-02", freq="M")],
[Period("2016-01-01", freq="D"), Period("2016-01-02", freq="D")],
[
Period("2016-01-01 00:00:00", freq="H"),
Period("2016-01-01 01:00:00", freq="H"),
],
[
Period("2016-01-01 00:00:00", freq="M"),
Period("2016-01-01 00:01:00", freq="M"),
],
[
Period("2016-01-01 00:00:00", freq="S"),
Period("2016-01-01 00:00:01", freq="S"),
],
],
)
def test_end_time_timevalues(self, input_vals):
# GH#17157
# Check that the time part of the Period is adjusted by end_time
# when using the dt accessor on a Series
input_vals = PeriodArray._from_sequence(np.asarray(input_vals))
ser = Series(input_vals)
result = ser.dt.end_time
expected = ser.apply(lambda x: x.end_time)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("input_vals", [("2001"), ("NaT")])
def test_to_period(self, input_vals):
# GH#21205
expected = Series([input_vals], dtype="Period[D]")
result = Series([input_vals], dtype="datetime64[ns]").dt.to_period("D")
tm.assert_series_equal(result, expected)
def test_normalize_pre_epoch_dates():
# GH: 36294
ser = pd.to_datetime(Series(["1969-01-01 09:00:00", "2016-01-01 09:00:00"]))
result = ser.dt.normalize()
expected = pd.to_datetime(Series(["1969-01-01", "2016-01-01"]))
tm.assert_series_equal(result, expected)