forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnumpy_.py
481 lines (409 loc) · 14.9 KB
/
numpy_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas._libs import lib
from pandas._libs.tslibs import (
get_unit_from_dtype,
is_supported_unit,
)
from pandas.compat.numpy import function as nv
from pandas.core.dtypes.astype import astype_array
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import (
is_dtype_equal,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import PandasDtype
from pandas.core.dtypes.missing import isna
from pandas.core import (
arraylike,
nanops,
ops,
)
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays._mixins import NDArrayBackedExtensionArray
from pandas.core.construction import ensure_wrapped_if_datetimelike
from pandas.core.strings.object_array import ObjectStringArrayMixin
if TYPE_CHECKING:
from pandas._typing import (
AxisInt,
Dtype,
NpDtype,
Scalar,
npt,
)
# error: Definition of "_concat_same_type" in base class "NDArrayBacked" is
# incompatible with definition in base class "ExtensionArray"
class PandasArray( # type: ignore[misc]
OpsMixin,
NDArrayBackedExtensionArray,
ObjectStringArrayMixin,
):
"""
A pandas ExtensionArray for NumPy data.
This is mostly for internal compatibility, and is not especially
useful on its own.
Parameters
----------
values : ndarray
The NumPy ndarray to wrap. Must be 1-dimensional.
copy : bool, default False
Whether to copy `values`.
Attributes
----------
None
Methods
-------
None
"""
# If you're wondering why pd.Series(cls) doesn't put the array in an
# ExtensionBlock, search for `ABCPandasArray`. We check for
# that _typ to ensure that users don't unnecessarily use EAs inside
# pandas internals, which turns off things like block consolidation.
_typ = "npy_extension"
__array_priority__ = 1000
_ndarray: np.ndarray
_dtype: PandasDtype
_internal_fill_value = np.nan
# ------------------------------------------------------------------------
# Constructors
def __init__(self, values: np.ndarray | PandasArray, copy: bool = False) -> None:
if isinstance(values, type(self)):
values = values._ndarray
if not isinstance(values, np.ndarray):
raise ValueError(
f"'values' must be a NumPy array, not {type(values).__name__}"
)
if values.ndim == 0:
# Technically we support 2, but do not advertise that fact.
raise ValueError("PandasArray must be 1-dimensional.")
if copy:
values = values.copy()
dtype = PandasDtype(values.dtype)
super().__init__(values, dtype)
@classmethod
def _from_sequence(
cls, scalars, *, dtype: Dtype | None = None, copy: bool = False
) -> PandasArray:
if isinstance(dtype, PandasDtype):
dtype = dtype._dtype
# error: Argument "dtype" to "asarray" has incompatible type
# "Union[ExtensionDtype, str, dtype[Any], dtype[floating[_64Bit]], Type[object],
# None]"; expected "Union[dtype[Any], None, type, _SupportsDType, str,
# Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any],
# _DTypeDict, Tuple[Any, Any]]]"
result = np.asarray(scalars, dtype=dtype) # type: ignore[arg-type]
if (
result.ndim > 1
and not hasattr(scalars, "dtype")
and (dtype is None or dtype == object)
):
# e.g. list-of-tuples
result = construct_1d_object_array_from_listlike(scalars)
if copy and result is scalars:
result = result.copy()
return cls(result)
def _from_backing_data(self, arr: np.ndarray) -> PandasArray:
return type(self)(arr)
# ------------------------------------------------------------------------
# Data
@property
def dtype(self) -> PandasDtype:
return self._dtype
# ------------------------------------------------------------------------
# NumPy Array Interface
def __array__(self, dtype: NpDtype | None = None) -> np.ndarray:
return np.asarray(self._ndarray, dtype=dtype)
def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
# Lightly modified version of
# https://numpy.org/doc/stable/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html
# The primary modification is not boxing scalar return values
# in PandasArray, since pandas' ExtensionArrays are 1-d.
out = kwargs.get("out", ())
result = arraylike.maybe_dispatch_ufunc_to_dunder_op(
self, ufunc, method, *inputs, **kwargs
)
if result is not NotImplemented:
return result
if "out" in kwargs:
# e.g. test_ufunc_unary
return arraylike.dispatch_ufunc_with_out(
self, ufunc, method, *inputs, **kwargs
)
if method == "reduce":
result = arraylike.dispatch_reduction_ufunc(
self, ufunc, method, *inputs, **kwargs
)
if result is not NotImplemented:
# e.g. tests.series.test_ufunc.TestNumpyReductions
return result
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x._ndarray if isinstance(x, PandasArray) else x for x in inputs)
if out:
kwargs["out"] = tuple(
x._ndarray if isinstance(x, PandasArray) else x for x in out
)
result = getattr(ufunc, method)(*inputs, **kwargs)
if ufunc.nout > 1:
# multiple return values; re-box array-like results
return tuple(type(self)(x) for x in result)
elif method == "at":
# no return value
return None
elif method == "reduce":
if isinstance(result, np.ndarray):
# e.g. test_np_reduce_2d
return type(self)(result)
# e.g. test_np_max_nested_tuples
return result
else:
# one return value; re-box array-like results
return type(self)(result)
# ------------------------------------------------------------------------
# Pandas ExtensionArray Interface
def astype(self, dtype, copy: bool = True):
dtype = pandas_dtype(dtype)
if is_dtype_equal(dtype, self.dtype):
if copy:
return self.copy()
return self
result = astype_array(self._ndarray, dtype=dtype, copy=copy)
return result
def isna(self) -> np.ndarray:
return isna(self._ndarray)
def _validate_scalar(self, fill_value):
if fill_value is None:
# Primarily for subclasses
fill_value = self.dtype.na_value
return fill_value
def _values_for_factorize(self) -> tuple[np.ndarray, float | None]:
if self.dtype.kind in "iub":
fv = None
else:
fv = np.nan
return self._ndarray, fv
# ------------------------------------------------------------------------
# Reductions
def any(
self,
*,
axis: AxisInt | None = None,
out=None,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_any((), {"out": out, "keepdims": keepdims})
result = nanops.nanany(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
def all(
self,
*,
axis: AxisInt | None = None,
out=None,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_all((), {"out": out, "keepdims": keepdims})
result = nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
def min(
self, *, axis: AxisInt | None = None, skipna: bool = True, **kwargs
) -> Scalar:
nv.validate_min((), kwargs)
result = nanops.nanmin(
values=self._ndarray, axis=axis, mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def max(
self, *, axis: AxisInt | None = None, skipna: bool = True, **kwargs
) -> Scalar:
nv.validate_max((), kwargs)
result = nanops.nanmax(
values=self._ndarray, axis=axis, mask=self.isna(), skipna=skipna
)
return self._wrap_reduction_result(axis, result)
def sum(
self,
*,
axis: AxisInt | None = None,
skipna: bool = True,
min_count: int = 0,
**kwargs,
) -> Scalar:
nv.validate_sum((), kwargs)
result = nanops.nansum(
self._ndarray, axis=axis, skipna=skipna, min_count=min_count
)
return self._wrap_reduction_result(axis, result)
def prod(
self,
*,
axis: AxisInt | None = None,
skipna: bool = True,
min_count: int = 0,
**kwargs,
) -> Scalar:
nv.validate_prod((), kwargs)
result = nanops.nanprod(
self._ndarray, axis=axis, skipna=skipna, min_count=min_count
)
return self._wrap_reduction_result(axis, result)
def mean(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_mean((), {"dtype": dtype, "out": out, "keepdims": keepdims})
result = nanops.nanmean(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
def median(
self,
*,
axis: AxisInt | None = None,
out=None,
overwrite_input: bool = False,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_median(
(), {"out": out, "overwrite_input": overwrite_input, "keepdims": keepdims}
)
result = nanops.nanmedian(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
def std(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
ddof: int = 1,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_stat_ddof_func(
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std"
)
result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)
def var(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
ddof: int = 1,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_stat_ddof_func(
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="var"
)
result = nanops.nanvar(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)
def sem(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
ddof: int = 1,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_stat_ddof_func(
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="sem"
)
result = nanops.nansem(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)
def kurt(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_stat_ddof_func(
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="kurt"
)
result = nanops.nankurt(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
def skew(
self,
*,
axis: AxisInt | None = None,
dtype: NpDtype | None = None,
out=None,
keepdims: bool = False,
skipna: bool = True,
):
nv.validate_stat_ddof_func(
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="skew"
)
result = nanops.nanskew(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
# ------------------------------------------------------------------------
# Additional Methods
def to_numpy(
self,
dtype: npt.DTypeLike | None = None,
copy: bool = False,
na_value: object = lib.no_default,
) -> np.ndarray:
mask = self.isna()
if na_value is not lib.no_default and mask.any():
result = self._ndarray.copy()
result[mask] = na_value
else:
result = self._ndarray
result = np.asarray(result, dtype=dtype)
if copy and result is self._ndarray:
result = result.copy()
return result
# ------------------------------------------------------------------------
# Ops
def __invert__(self) -> PandasArray:
return type(self)(~self._ndarray)
def __neg__(self) -> PandasArray:
return type(self)(-self._ndarray)
def __pos__(self) -> PandasArray:
return type(self)(+self._ndarray)
def __abs__(self) -> PandasArray:
return type(self)(abs(self._ndarray))
def _cmp_method(self, other, op):
if isinstance(other, PandasArray):
other = other._ndarray
other = ops.maybe_prepare_scalar_for_op(other, (len(self),))
pd_op = ops.get_array_op(op)
other = ensure_wrapped_if_datetimelike(other)
result = pd_op(self._ndarray, other)
if op is divmod or op is ops.rdivmod:
a, b = result
if isinstance(a, np.ndarray):
# for e.g. op vs TimedeltaArray, we may already
# have an ExtensionArray, in which case we do not wrap
return self._wrap_ndarray_result(a), self._wrap_ndarray_result(b)
return a, b
if isinstance(result, np.ndarray):
# for e.g. multiplication vs TimedeltaArray, we may already
# have an ExtensionArray, in which case we do not wrap
return self._wrap_ndarray_result(result)
return result
_arith_method = _cmp_method
def _wrap_ndarray_result(self, result: np.ndarray):
# If we have timedelta64[ns] result, return a TimedeltaArray instead
# of a PandasArray
if result.dtype.kind == "m" and is_supported_unit(
get_unit_from_dtype(result.dtype)
):
from pandas.core.arrays import TimedeltaArray
return TimedeltaArray._simple_new(result, dtype=result.dtype)
return type(self)(result)
# ------------------------------------------------------------------------
# String methods interface
_str_na_value = np.nan