Warning
Starting January 1, 2019, pandas feature releases will support Python 3 only. See :ref:`install.dropping-27` for more.
{{ common_imports }}
These are the changes in pandas 0.24.0. See :ref:`release` for a full changelog including other versions of pandas.
- :func:`merge` now directly allows merge between objects of type
DataFrame
and namedSeries
, without the need to convert theSeries
object into aDataFrame
beforehand (:issue:`21220`) ExcelWriter
now acceptsmode
as a keyword argument, enabling append to existing workbooks when using theopenpyxl
engine (:issue:`3441`)FrozenList
has gained the.union()
and.difference()
methods. This functionality greatly simplifies groupby's that rely on explicitly excluding certain columns. See :ref:`Splitting an object into groups <groupby.split>` for more information (:issue:`15475`, :issue:`15506`).- :func:`DataFrame.to_parquet` now accepts
index
as an argument, allowing the user to override the engine's default behavior to include or omit the dataframe's indexes from the resulting Parquet file. (:issue:`20768`) - :meth:`DataFrame.corr` and :meth:`Series.corr` now accept a callable for generic calculation methods of correlation, e.g. histogram intersection (:issue:`22684`)
- :func:`DataFrame.to_string` now accepts
decimal
as an argument, allowing
the user to specify which decimal separator should be used in the output. (:issue:`23614`)
A Series
based on an ExtensionArray
now supports arithmetic and comparison
operators (:issue:`19577`). There are two approaches for providing operator support for an ExtensionArray
:
- Define each of the operators on your
ExtensionArray
subclass. - Use an operator implementation from pandas that depends on operators that are already defined
on the underlying elements (scalars) of the
ExtensionArray
.
See the :ref:`ExtensionArray Operator Support <extending.extension.operator>` documentation section for details on both ways of adding operator support.
Pandas has gained the ability to hold integer dtypes with missing values. This long requested feature is enabled through the use of :ref:`extension types <extending.extension-types>`. Here is an example of the usage.
We can construct a Series
with the specified dtype. The dtype string Int64
is a pandas ExtensionDtype
. Specifying a list or array using the traditional missing value
marker of np.nan
will infer to integer dtype. The display of the Series
will also use the NaN
to indicate missing values in string outputs. (:issue:`20700`, :issue:`20747`, :issue:`22441`, :issue:`21789`, :issue:`22346`)
.. ipython:: python s = pd.Series([1, 2, np.nan], dtype='Int64') s
Operations on these dtypes will propagate NaN
as other pandas operations.
.. ipython:: python # arithmetic s + 1 # comparison s == 1 # indexing s.iloc[1:3] # operate with other dtypes s + s.iloc[1:3].astype('Int8') # coerce when needed s + 0.01
These dtypes can operate as part of of DataFrame
.
.. ipython:: python df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')}) df df.dtypes
These dtypes can be merged & reshaped & casted.
.. ipython:: python pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes df['A'].astype(float)
Reduction and groupby operations such as 'sum' work.
.. ipython:: python df.sum() df.groupby('B').A.sum()
Warning
The Integer NA support currently uses the captilized dtype version, e.g. Int8
as compared to the traditional int8
. This may be changed at a future date.
:func:`read_html` previously ignored colspan
and rowspan
attributes.
Now it understands them, treating them as sequences of cells with the same
value. (:issue:`17054`)
.. ipython:: python result = pd.read_html(""" <table> <thead> <tr> <th>A</th><th>B</th><th>C</th> </tr> </thead> <tbody> <tr> <td colspan="2">1</td><td>2</td> </tr> </tbody> </table>""")
Previous Behavior:
In [13]: result
Out [13]:
[ A B C
0 1 2 NaN]
Current Behavior:
.. ipython:: python result
Interval and Period data may now be stored in a Series
or DataFrame
, in addition to an
:class:`IntervalIndex` and :class:`PeriodIndex` like previously (:issue:`19453`, :issue:`22862`).
.. ipython:: python ser = pd.Series(pd.interval_range(0, 5)) ser ser.dtype
And for periods:
.. ipython:: python pser = pd.Series(pd.date_range("2000", freq="D", periods=5)) pser pser.dtype
Previously, these would be cast to a NumPy array with object dtype. In general, this should result in better performance when storing an array of intervals or periods in a :class:`Series` or column of a :class:`DataFrame`.
Note that the .values
of a Series
containing one of these types is no longer a NumPy
array, but rather an ExtensionArray
:
.. ipython:: python ser.values pser.values
This is the same behavior as Series.values
for categorical data. See
:ref:`whatsnew_0240.api_breaking.interval_values` for more.
:func:`Datafame.merge` and :func:`Dataframe.join` can now be used to join multi-indexed Dataframe
instances on the overlaping index levels (:issue:`6360`)
See the :ref:`Merge, join, and concatenate <merging.Join_with_two_multi_indexes>` documentation section.
.. ipython:: python index_left = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'), ('K1', 'X2')], names=['key', 'X']) left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=index_left) index_right = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'), ('K2', 'Y2'), ('K2', 'Y3')], names=['key', 'Y']) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index_right) left.join(right)
For earlier versions this can be done using the following.
.. ipython:: python pd.merge(left.reset_index(), right.reset_index(), on=['key'], how='inner').set_index(['key', 'X', 'Y'])
:func:`DataFrame.rename_axis` now supports index
and columns
arguments
and :func:`Series.rename_axis` supports index
argument (:issue:`19978`)
This change allows a dictionary to be passed so that some of the names
of a MultiIndex
can be changed.
Example:
.. ipython:: python mi = pd.MultiIndex.from_product([list('AB'), list('CD'), list('EF')], names=['AB', 'CD', 'EF']) df = pd.DataFrame([i for i in range(len(mi))], index=mi, columns=['N']) df df.rename_axis(index={'CD': 'New'})
See the :ref:`advanced docs on renaming<advanced.index_names>` for more details.
- :func:`to_datetime` now supports the
%Z
and%z
directive when passed intoformat
(:issue:`13486`) - :func:`Series.mode` and :func:`DataFrame.mode` now support the
dropna
parameter which can be used to specify whetherNaN
/NaT
values should be considered (:issue:`17534`) - :func:`to_csv` now supports
compression
keyword when a file handle is passed. (:issue:`21227`) - :meth:`Index.droplevel` is now implemented also for flat indexes, for compatibility with :class:`MultiIndex` (:issue:`21115`)
- :meth:`Series.droplevel` and :meth:`DataFrame.droplevel` are now implemented (:issue:`20342`)
- Added support for reading from/writing to Google Cloud Storage via the
gcsfs
library (:issue:`19454`, :issue:`23094`) - :func:`to_gbq` and :func:`read_gbq` signature and documentation updated to
reflect changes from the Pandas-GBQ library version 0.8.0.
Adds a
credentials
argument, which enables the use of any kind of google-auth credentials. (:issue:`21627`, :issue:`22557`, :issue:`23662`) - New method :meth:`HDFStore.walk` will recursively walk the group hierarchy of an HDF5 file (:issue:`10932`)
- :func:`read_html` copies cell data across
colspan
androwspan
, and it treats all-th
table rows as headers ifheader
kwarg is not given and there is nothead
(:issue:`17054`) - :meth:`Series.nlargest`, :meth:`Series.nsmallest`, :meth:`DataFrame.nlargest`, and :meth:`DataFrame.nsmallest` now accept the value
"all"
for thekeep
argument. This keeps all ties for the nth largest/smallest value (:issue:`16818`) - :class:`IntervalIndex` has gained the :meth:`~IntervalIndex.set_closed` method to change the existing
closed
value (:issue:`21670`) - :func:`~DataFrame.to_csv`, :func:`~Series.to_csv`, :func:`~DataFrame.to_json`, and :func:`~Series.to_json` now support
compression='infer'
to infer compression based on filename extension (:issue:`15008`). The default compression forto_csv
,to_json
, andto_pickle
methods has been updated to'infer'
(:issue:`22004`). - :meth:`DataFrame.to_sql` now supports writing
TIMESTAMP WITH TIME ZONE
types for supported databases. For databases that don't support timezones, datetime data will be stored as timezone unaware local timestamps. See the :ref:`io.sql_datetime_data` for implications (:issue:`9086`). - :func:`to_timedelta` now supports iso-formated timedelta strings (:issue:`21877`)
- :class:`Series` and :class:`DataFrame` now support :class:`Iterable` in constructor (:issue:`2193`)
- :class:`DatetimeIndex` gained :attr:`DatetimeIndex.timetz` attribute. Returns local time with timezone information. (:issue:`21358`)
- :meth:`round`, :meth:`ceil`, and meth:floor for :class:`DatetimeIndex` and :class:`Timestamp` now support an
ambiguous
argument for handling datetimes that are rounded to ambiguous times (:issue:`18946`) - :meth:`round`, :meth:`ceil`, and meth:floor for :class:`DatetimeIndex` and :class:`Timestamp` now support a
nonexistent
argument for handling datetimes that are rounded to nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`22647`) - :class:`Resampler` now is iterable like :class:`GroupBy` (:issue:`15314`).
- :meth:`Series.resample` and :meth:`DataFrame.resample` have gained the :meth:`Resampler.quantile` (:issue:`15023`).
- :meth:`pandas.core.dtypes.is_list_like` has gained a keyword
allow_sets
which isTrue
by default; ifFalse
, all instances ofset
will not be considered "list-like" anymore (:issue:`23061`) - :meth:`Index.to_frame` now supports overriding column name(s) (:issue:`22580`).
- New attribute :attr:`__git_version__` will return git commit sha of current build (:issue:`21295`).
- Compatibility with Matplotlib 3.0 (:issue:`22790`).
- Added :meth:`Interval.overlaps`, :meth:`IntervalArray.overlaps`, and :meth:`IntervalIndex.overlaps` for determining overlaps between interval-like objects (:issue:`21998`)
- :func:`read_fwf` now accepts keyword infer_nrows (:issue:`15138`).
- :func:`~DataFrame.to_parquet` now supports writing a
DataFrame
as a directory of parquet files partitioned by a subset of the columns whenengine = 'pyarrow'
(:issue:`23283`) - :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have gained the
nonexistent
argument for alternative handling of nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`8917`) - :meth:`Index.difference` now has an optional
sort
parameter to specify whether the results should be sorted if possible (:issue:`17839`) - :meth:`read_excel()` now accepts
usecols
as a list of column names or callable (:issue:`18273`) - :meth:`MultiIndex.to_flat_index` has been added to flatten multiple levels into a single-level :class:`Index` object.
- :meth:`DataFrame.to_stata` and :class:` pandas.io.stata.StataWriter117` can write mixed sting columns to Stata strl format (:issue:`23633`)
- :meth:`DataFrame.between_time` and :meth:`DataFrame.at_time` have gained the an
axis
parameter (:issue: 8839)
- A newly constructed empty :class:`DataFrame` with integer as the
dtype
will now only be cast tofloat64
ifindex
is specified (:issue:`22858`) - :meth:`Series.str.cat` will now raise if others is a set (:issue:`23009`)
- Passing scalar values to :class:`DatetimeIndex` or :class:`TimedeltaIndex` will now raise
TypeError
instead ofValueError
(:issue:`23539`)
We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`). If installed, we now require:
Package | Minimum Version | Required |
---|---|---|
numpy | 1.12.0 | X |
bottleneck | 1.2.0 | |
fastparquet | 0.1.2 | |
matplotlib | 2.0.0 | |
numexpr | 2.6.1 | |
pandas-gbq | 0.8.0 | |
pyarrow | 0.7.0 | |
pytables | 3.4.2 | |
scipy | 0.18.1 | |
xlrd | 1.0.0 |
Additionally we no longer depend on feather-format for feather based storage and replaced it with references to pyarrow (:issue:`21639` and :issue:`23053`).
:func:`DataFrame.to_csv` now uses :func:`os.linesep` rather than '\n'
for the default line terminator (:issue:`20353`).
This change only affects when running on Windows, where '\r\n'
was used for line terminator
even when '\n'
was passed in line_terminator
.
Previous Behavior on Windows:
In [1]: data = pd.DataFrame({
...: "string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]
...: })
In [2]: # When passing file PATH to to_csv, line_terminator does not work, and csv is saved with '\r\n'.
...: # Also, this converts all '\n's in the data to '\r\n'.
...: data.to_csv("test.csv", index=False, line_terminator='\n')
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
b'string_with_lf,string_with_crlf\r\n"a\r\nbc","a\r\r\nbc"\r\n'
In [4]: # When passing file OBJECT with newline option to to_csv, line_terminator works.
...: with open("test2.csv", mode='w', newline='\n') as f:
...: data.to_csv(f, index=False, line_terminator='\n')
In [5]: with open("test2.csv", mode='rb') as f:
...: print(f.read())
b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
New Behavior on Windows:
By passing
line_terminator
explicitly, line terminator is set to that character.The value of
line_terminator
only affects the line terminator of CSV, so it does not change the value inside the data.In [1]: data = pd.DataFrame({ ...: "string_with_lf": ["a\nbc"], ...: "string_with_crlf": ["a\r\nbc"] ...: }) In [2]: data.to_csv("test.csv", index=False, line_terminator='\n') In [3]: with open("test.csv", mode='rb') as f: ...: print(f.read()) b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
On Windows, the value of
os.linesep
is'\r\n'
, so ifline_terminator
is not set,'\r\n'
is used for line terminator.Again, it does not affect the value inside the data.
In [1]: data = pd.DataFrame({ ...: "string_with_lf": ["a\nbc"], ...: "string_with_crlf": ["a\r\nbc"] ...: }) In [2]: data.to_csv("test.csv", index=False) In [3]: with open("test.csv", mode='rb') as f: ...: print(f.read()) b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
For files objects, specifying
newline
is not sufficient to set the line terminator. You must pass in theline_terminator
explicitly, even in this case.In [1]: data = pd.DataFrame({ ...: "string_with_lf": ["a\nbc"], ...: "string_with_crlf": ["a\r\nbc"] ...: }) In [2]: with open("test2.csv", mode='w', newline='\n') as f: ...: data.to_csv(f, index=False) In [3]: with open("test2.csv", mode='rb') as f: ...: print(f.read()) b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
The :attr:`~Interval.values` attribute of an :class:`IntervalIndex` now returns an
IntervalArray
, rather than a NumPy array of :class:`Interval` objects (:issue:`19453`).
Previous Behavior:
In [1]: idx = pd.interval_range(0, 4)
In [2]: idx.values
Out[2]:
array([Interval(0, 1, closed='right'), Interval(1, 2, closed='right'),
Interval(2, 3, closed='right'), Interval(3, 4, closed='right')],
dtype=object)
New Behavior:
.. ipython:: python idx = pd.interval_range(0, 4) idx.values
This mirrors CategoricalIndex.values
, which returns a Categorical
.
For situations where you need an ndarray
of Interval
objects, use
:meth:`numpy.asarray`.
.. ipython:: python np.asarray(idx) idx.values.astype(object)
Previously, parsing datetime strings with UTC offsets with :func:`to_datetime`
or :class:`DatetimeIndex` would automatically convert the datetime to UTC
without timezone localization. This is inconsistent from parsing the same
datetime string with :class:`Timestamp` which would preserve the UTC
offset in the tz
attribute. Now, :func:`to_datetime` preserves the UTC
offset in the tz
attribute when all the datetime strings have the same
UTC offset (:issue:`17697`, :issue:`11736`, :issue:`22457`)
Previous Behavior:
In [2]: pd.to_datetime("2015-11-18 15:30:00+05:30")
Out[2]: Timestamp('2015-11-18 10:00:00')
In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30")
Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)')
# Different UTC offsets would automatically convert the datetimes to UTC (without a UTC timezone)
In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype='datetime64[ns]', freq=None)
Current Behavior:
.. ipython:: python pd.to_datetime("2015-11-18 15:30:00+05:30") pd.Timestamp("2015-11-18 15:30:00+05:30")
Parsing datetime strings with the same UTC offset will preserve the UTC offset in the tz
.. ipython:: python pd.to_datetime(["2015-11-18 15:30:00+05:30"] * 2)
Parsing datetime strings with different UTC offsets will now create an Index of
datetime.datetime
objects with different UTC offsets
.. ipython:: python idx = pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"]) idx idx[0] idx[1]
Passing utc=True
will mimic the previous behavior but will correctly indicate
that the dates have been converted to UTC
.. ipython:: python pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"], utc=True)
:class:`Day` and associated frequency alias 'D'
were documented to represent
a calendar day; however, arithmetic and operations with :class:`Day` sometimes
respected absolute time instead (i.e. Day(n)
and acted identically to Timedelta(days=n)
).
Previous Behavior:
In [2]: ts = pd.Timestamp('2016-10-30 00:00:00', tz='Europe/Helsinki')
# Respects calendar arithmetic
In [3]: pd.date_range(start=ts, freq='D', periods=3)
Out[3]:
DatetimeIndex(['2016-10-30 00:00:00+03:00', '2016-10-31 00:00:00+02:00',
'2016-11-01 00:00:00+02:00'],
dtype='datetime64[ns, Europe/Helsinki]', freq='D')
# Respects absolute arithmetic
In [4]: ts + pd.tseries.frequencies.to_offset('D')
Out[4]: Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')
:class:`CalendarDay` and associated frequency alias 'CD'
are now available
and respect calendar day arithmetic while :class:`Day` and frequency alias 'D'
will now respect absolute time (:issue:`22274`, :issue:`20596`, :issue:`16980`, :issue:`8774`)
See the :ref:`documentation here <timeseries.dayvscalendarday>` for more information.
Addition with :class:`CalendarDay` across a daylight savings time transition:
.. ipython:: python ts = pd.Timestamp('2016-10-30 00:00:00', tz='Europe/Helsinki') ts + pd.offsets.Day(1) ts + pd.offsets.CalendarDay(1)
The time values in :class:`Period` and :class:`PeriodIndex` objects are now set
to '23:59:59.999999999' when calling :attr:`Series.dt.end_time`, :attr:`Period.end_time`,
:attr:`PeriodIndex.end_time`, :func:`Period.to_timestamp()` with how='end'
,
or :func:`PeriodIndex.to_timestamp()` with how='end'
(:issue:`17157`)
Previous Behavior:
In [2]: p = pd.Period('2017-01-01', 'D')
In [3]: pi = pd.PeriodIndex([p])
In [4]: pd.Series(pi).dt.end_time[0]
Out[4]: Timestamp(2017-01-01 00:00:00)
In [5]: p.end_time
Out[5]: Timestamp(2017-01-01 23:59:59.999999999)
Current Behavior:
Calling :attr:`Series.dt.end_time` will now result in a time of '23:59:59.999999999' as is the case with :attr:`Period.end_time`, for example
.. ipython:: python p = pd.Period('2017-01-01', 'D') pi = pd.PeriodIndex([p]) pd.Series(pi).dt.end_time[0] p.end_time
SparseArray
, the array backing SparseSeries
and the columns in a SparseDataFrame
,
is now an extension array (:issue:`21978`, :issue:`19056`, :issue:`22835`).
To conform to this interface and for consistency with the rest of pandas, some API breaking
changes were made:
SparseArray
is no longer a subclass of :class:`numpy.ndarray`. To convert a SparseArray to a NumPy array, use :meth:`numpy.asarray`.SparseArray.dtype
andSparseSeries.dtype
are now instances of :class:`SparseDtype`, rather thannp.dtype
. Access the underlying dtype withSparseDtype.subtype
.- :meth:`numpy.asarray(sparse_array)` now returns a dense array with all the values, not just the non-fill-value values (:issue:`14167`)
SparseArray.take
now matches the API of :meth:`pandas.api.extensions.ExtensionArray.take` (:issue:`19506`):- The default value of
allow_fill
has changed fromFalse
toTrue
. - The
out
andmode
parameters are now longer accepted (previously, this raised if they were specified). - Passing a scalar for
indices
is no longer allowed.
- The default value of
- The result of concatenating a mix of sparse and dense Series is a Series with sparse values, rather than a
SparseSeries
. SparseDataFrame.combine
andDataFrame.combine_first
no longer supports combining a sparse column with a dense column while preserving the sparse subtype. The result will be an object-dtype SparseArray.- Setting :attr:`SparseArray.fill_value` to a fill value with a different dtype is now allowed.
DataFrame[column]
is now a :class:`Series` with sparse values, rather than a :class:`SparseSeries`, when slicing a single column with sparse values (:issue:`23559`).
Some new warnings are issued for operations that require or are likely to materialize a large dense array:
- A :class:`errors.PerformanceWarning` is issued when using fillna with a
method
, as a dense array is constructed to create the filled array. Filling with avalue
is the efficient way to fill a sparse array. - A :class:`errors.PerformanceWarning` is now issued when concatenating sparse Series with differing fill values. The fill value from the first sparse array continues to be used.
In addition to these API breaking changes, many :ref:`performance improvements and bug fixes have been made <whatsnew_0240.bug_fixes.sparse>`.
Finally, a Series.sparse
accessor was added to provide sparse-specific methods like :meth:`Series.sparse.from_coo`.
.. ipython:: python s = pd.Series([0, 0, 1, 1, 1], dtype='Sparse[int]') s.sparse.density
Bug in :func:`DataFrame.to_dict` raises ValueError
when used with
orient='index'
and a non-unique index instead of losing data (:issue:`22801`)
.. ipython:: python :okexcept: df = pd.DataFrame({'a': [1, 2], 'b': [0.5, 0.75]}, index=['A', 'A']) df df.to_dict(orient='index')
Creating a Tick
object (:class:`Day`, :class:`Hour`, :class:`Minute`,
:class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano`) with
normalize=True
is no longer supported. This prevents unexpected behavior
where addition could fail to be monotone or associative. (:issue:`21427`)
Previous Behavior:
In [2]: ts = pd.Timestamp('2018-06-11 18:01:14')
In [3]: ts
Out[3]: Timestamp('2018-06-11 18:01:14')
In [4]: tic = pd.offsets.Hour(n=2, normalize=True)
...:
In [5]: tic
Out[5]: <2 * Hours>
In [6]: ts + tic
Out[6]: Timestamp('2018-06-11 00:00:00')
In [7]: ts + tic + tic + tic == ts + (tic + tic + tic)
Out[7]: False
Current Behavior:
.. ipython:: python ts = pd.Timestamp('2018-06-11 18:01:14') tic = pd.offsets.Hour(n=2) ts + tic + tic + tic == ts + (tic + tic + tic)
Subtraction of a Period
from another Period
will give a DateOffset
.
instead of an integer (:issue:`21314`)
.. ipython:: python june = pd.Period('June 2018') april = pd.Period('April 2018') june - april
Previous Behavior:
In [2]: june = pd.Period('June 2018')
In [3]: april = pd.Period('April 2018')
In [4]: june - april
Out [4]: 2
Similarly, subtraction of a Period
from a PeriodIndex
will now return
an Index
of DateOffset
objects instead of an Int64Index
.. ipython:: python pi = pd.period_range('June 2018', freq='M', periods=3) pi - pi[0]
Previous Behavior:
In [2]: pi = pd.period_range('June 2018', freq='M', periods=3)
In [3]: pi - pi[0]
Out[3]: Int64Index([0, 1, 2], dtype='int64')
Addition/Subtraction of NaN
from :class:`DataFrame`
Adding or subtracting NaN
from a :class:`DataFrame` column with
timedelta64[ns]
dtype will now raise a TypeError
instead of returning
all-NaT
. This is for compatibility with TimedeltaIndex
and
Series
behavior (:issue:`22163`)
.. ipython:: python :okexcept: df = pd.DataFrame([pd.Timedelta(days=1)]) df - np.nan
Previous Behavior:
In [4]: df = pd.DataFrame([pd.Timedelta(days=1)])
In [5]: df - np.nan
Out[5]:
0
0 NaT
Previously, the broadcasting behavior of :class:`DataFrame` comparison
operations (==
, !=
, ...) was inconsistent with the behavior of
arithmetic operations (+
, -
, ...). The behavior of the comparison
operations has been changed to match the arithmetic operations in these cases.
(:issue:`22880`)
The affected cases are:
- operating against a 2-dimensional
np.ndarray
with either 1 row or 1 column will now broadcast the same way anp.ndarray
would (:issue:`23000`). - a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise
ValueError
instead of operating column-by-column (:issue:`22880`. - a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising
ValueError
(:issue:`22880`).
Previous Behavior:
In [3]: arr = np.arange(6).reshape(3, 2)
In [4]: df = pd.DataFrame(arr)
In [5]: df == arr[[0], :]
...: # comparison previously broadcast where arithmetic would raise
Out[5]:
0 1
0 True True
1 False False
2 False False
In [6]: df + arr[[0], :]
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [7]: df == (1, 2)
...: # length matches number of columns;
...: # comparison previously raised where arithmetic would broadcast
...
ValueError: Invalid broadcasting comparison [(1, 2)] with block values
In [8]: df + (1, 2)
Out[8]:
0 1
0 1 3
1 3 5
2 5 7
In [9]: df == (1, 2, 3)
...: # length matches number of rows
...: # comparison previously broadcast where arithmetic would raise
Out[9]:
0 1
0 False True
1 True False
2 False False
In [10]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
Current Behavior:
.. ipython:: python :okexcept: arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr)
.. ipython:: python # Comparison operations and arithmetic operations both broadcast. df == arr[[0], :] df + arr[[0], :]
.. ipython:: python # Comparison operations and arithmetic operations both broadcast. df == (1, 2) df + (1, 2)
.. ipython:: python :okexcept: # Comparison operations and arithmetic opeartions both raise ValueError. df == (1, 2, 3) df + (1, 2, 3)
:class:`DataFrame` arithmetic operations when operating with 2-dimensional
np.ndarray
objects now broadcast in the same way as np.ndarray
broadcast. (:issue:`23000`)
Previous Behavior:
In [3]: arr = np.arange(6).reshape(3, 2)
In [4]: df = pd.DataFrame(arr)
In [5]: df + arr[[0], :] # 1 row, 2 columns
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [6]: df + arr[:, [1]] # 1 column, 3 rows
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (3, 1)
Current Behavior:
.. ipython:: python arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr) df
.. ipython:: python df + arr[[0], :] # 1 row, 2 columns df + arr[:, [1]] # 1 column, 3 rows
:class:`pandas.api.extensions.ExtensionDtype` Equality and Hashability
Pandas now requires that extension dtypes be hashable. The base class implements
a default __eq__
and __hash__
. If you have a parametrized dtype, you should
update the ExtensionDtype._metadata
tuple to match the signature of your
__init__
method. See :class:`pandas.api.extensions.ExtensionDtype` for more (:issue:`22476`).
Other changes
ExtensionArray
has gained the abstract methods.dropna()
(:issue:`21185`)ExtensionDtype
has gained the ability to instantiate from string dtypes, e.g.decimal
would instantiate a registeredDecimalDtype
; furthermore theExtensionDtype
has gained the methodconstruct_array_type
(:issue:`21185`)- An
ExtensionArray
with a boolean dtype now works correctly as a boolean indexer. :meth:`pandas.api.types.is_bool_dtype` now properly considers them boolean (:issue:`22326`) - Added
ExtensionDtype._is_numeric
for controlling whether an extension dtype is considered numeric (:issue:`22290`). - The
ExtensionArray
constructor,_from_sequence
now take the keyword argcopy=False
(:issue:`21185`) - Bug in :meth:`Series.get` for
Series
usingExtensionArray
and integer index (:issue:`21257`) - :meth:`~Series.shift` now dispatches to :meth:`ExtensionArray.shift` (:issue:`22386`)
- :meth:`Series.combine()` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine()` with scalar argument now works for any function type (:issue:`21248`)
- :meth:`Series.astype` and :meth:`DataFrame.astype` now dispatch to :meth:`ExtensionArray.astype` (:issue:`21185:`).
- Slicing a single row of a
DataFrame
with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`) - Added :meth:`pandas.api.types.register_extension_dtype` to register an extension type with pandas (:issue:`22664`)
- Bug when concatenating multiple
Series
with different extension dtypes not casting to object dtype (:issue:`22994`) - Series backed by an
ExtensionArray
now work with :func:`util.hash_pandas_object` (:issue:`23066`) - Updated the
.type
attribute forPeriodDtype
,DatetimeTZDtype
, andIntervalDtype
to be instances of the dtype (Period
,Timestamp
, andInterval
respectively) (:issue:`22938`) - :func:`ExtensionArray.isna` is allowed to return an
ExtensionArray
(:issue:`22325`). - Support for reduction operations such as
sum
,mean
via opt-in base class method override (:issue:`22762`) - :meth:`DataFrame.stack` no longer converts to object dtype for DataFrames where each column has the same extension dtype. The output Series will have the same dtype as the columns (:issue:`23077`).
- :meth:`Series.unstack` and :meth:`DataFrame.unstack` no longer convert extension arrays to object-dtype ndarrays. Each column in the output
DataFrame
will now have the same dtype as the input (:issue:`23077`). - Bug when grouping :meth:`Dataframe.groupby()` and aggregating on
ExtensionArray
it was not returning the actualExtensionArray
dtype (:issue:`23227`).
Series
and Index
constructors now raise when the
data is incompatible with a passed dtype=
(:issue:`15832`)
Previous Behavior:
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
0 18446744073709551615
dtype: uint64
Current Behavior:
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
...
OverflowError: Trying to coerce negative values to unsigned integers
:func:`crosstab` will preserve now dtypes in some cases that previously would cast from integer dtype to floating dtype (:issue:`22019`)
Previous Behavior:
In [3]: df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
...: 'c': [1, 1, np.nan, 1, 1]})
In [4]: pd.crosstab(df.a, df.b, normalize='columns')
Out[4]:
b 3 4
a
1 0.5 0.0
2 0.5 1.0
Current Behavior:
In [3]: df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
...: 'c': [1, 1, np.nan, 1, 1]})
In [4]: pd.crosstab(df.a, df.b, normalize='columns')
- For :class:`DatetimeIndex` and :class:`TimedeltaIndex` with non-
None
freq
attribute, addition or subtraction of integer-dtyped array orIndex
will return an object of the same class (:issue:`19959`) - :class:`DateOffset` objects are now immutable. Attempting to alter one of these will now raise
AttributeError
(:issue:`21341`) - :class:`PeriodIndex` subtraction of another
PeriodIndex
will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising aTypeError
(:issue:`20049`) - :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and
retbins=True
(:issue:`19891`) - :meth:`DatetimeIndex.to_period` and :meth:`Timestamp.to_period` will issue a warning when timezone information will be lost (:issue:`21333`)
- :class:`DatetimeIndex` now accepts :class:`Int64Index` arguments as epoch timestamps (:issue:`20997`)
- Accessing a level of a
MultiIndex
with a duplicate name (e.g. in :meth:`~MultiIndex.get_level_values`) now raises aValueError
instead of aKeyError
(:issue:`21678`). - Invalid construction of
IntervalDtype
will now always raise aTypeError
rather than aValueError
if the subdtype is invalid (:issue:`21185`) - Trying to reindex a
DataFrame
with a non uniqueMultiIndex
now raises aValueError
instead of anException
(:issue:`21770`) - :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)
- :class:`Index` subtraction will attempt to operate element-wise instead of raising
TypeError
(:issue:`19369`) - :class:`pandas.io.formats.style.Styler` supports a
number-format
property when using :meth:`~pandas.io.formats.style.Styler.to_excel` (:issue:`22015`) - :meth:`DataFrame.corr` and :meth:`Series.corr` now raise a
ValueError
along with a helpful error message instead of aKeyError
when supplied with an invalid method (:issue:`22298`) - :meth:`shift` will now always return a copy, instead of the previous behaviour of returning self when shifting by 0 (:issue:`22397`)
- :meth:`DataFrame.set_index` now allows all one-dimensional list-likes, raises a
TypeError
for incorrect types, has an improvedKeyError
message, and will not fail on duplicate column names withdrop=True
. (:issue:`22484`) - Slicing a single row of a DataFrame with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- :class:`DateOffset` attribute _cacheable and method _should_cache have been removed (:issue:`23118`)
- Comparing :class:`Timedelta` to be less or greater than unknown types now raises a
TypeError
instead of returningFalse
(:issue:`20829`) - :meth:`Categorical.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23466`).
- :meth:`Categorical.searchsorted` now raises a
KeyError
rather that aValueError
, if a searched for key is not found in its categories (:issue:`23466`). - :meth:`Index.hasnans` and :meth:`Series.hasnans` now always return a python boolean. Previously, a python or a numpy boolean could be returned, depending on circumstances (:issue:`23294`).
- The order of the arguments of :func:`DataFrame.to_html` and :func:`DataFrame.to_string` is rearranged to be consistent with each other. (:issue:`23614`)
- :meth:`DataFrame.to_stata`, :meth:`read_stata`, :class:`StataReader` and :class:`StataWriter` have deprecated the
encoding
argument. The encoding of a Stata dta file is determined by the file type and cannot be changed (:issue:`21244`) - :meth:`MultiIndex.to_hierarchical` is deprecated and will be removed in a future version (:issue:`21613`)
- :meth:`Series.ptp` is deprecated. Use
numpy.ptp
instead (:issue:`21614`) - :meth:`Series.compress` is deprecated. Use
Series[condition]
instead (:issue:`18262`) - The signature of :meth:`Series.to_csv` has been uniformed to that of :meth:`DataFrame.to_csv`: the name of the first argument is now
path_or_buf
, the order of subsequent arguments has changed, theheader
argument now defaults toTrue
. (:issue:`19715`) - :meth:`Categorical.from_codes` has deprecated providing float values for the
codes
argument. (:issue:`21767`) - :func:`pandas.read_table` is deprecated. Instead, use :func:`pandas.read_csv` passing
sep='\t'
if necessary (:issue:`21948`) - :meth:`Series.str.cat` has deprecated using arbitrary list-likes within list-likes. A list-like container may still contain
many
Series
,Index
or 1-dimensionalnp.ndarray
, or alternatively, only scalar values. (:issue:`21950`) - :meth:`FrozenNDArray.searchsorted` has deprecated the
v
parameter in favor ofvalue
(:issue:`14645`) - :func:`DatetimeIndex.shift` and :func:`PeriodIndex.shift` now accept
periods
argument instead ofn
for consistency with :func:`Index.shift` and :func:`Series.shift`. Usingn
throws a deprecation warning (:issue:`22458`, :issue:`22912`) - The
fastpath
keyword of the different Index constructors is deprecated (:issue:`23110`). - :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have deprecated the
errors
argument in favor of thenonexistent
argument (:issue:`8917`) - The class
FrozenNDArray
has been deprecated. When unpickling,FrozenNDArray
will be unpickled tonp.ndarray
once this class is removed (:issue:`9031`) - The methods :meth:`DataFrame.update` and :meth:`Panel.update` have deprecated the
raise_conflict=False|True
keyword in favor oferrors='ignore'|'raise'
(:issue:`23585`) - The methods :meth:`Series.str.partition` and :meth:`Series.str.rpartition` have deprecated the
pat
keyword in favor ofsep
(:issue:`22676`) - Deprecated the nthreads keyword of :func:`pandas.read_feather` in favor of use_threads to reflect the changes in pyarrow 0.11.0. (:issue:`23053`)
- :func:`pandas.read_excel` has deprecated accepting
usecols
as an integer. Please pass in a list of ints from 0 tousecols
inclusive instead (:issue:`23527`) - Constructing a :class:`TimedeltaIndex` from data with
datetime64
-dtyped data is deprecated, will raiseTypeError
in a future version (:issue:`23539`) - The
keep_tz=False
option (the default) of thekeep_tz
keyword of :meth:`DatetimeIndex.to_series` is deprecated (:issue:`17832`). - Timezone converting a tz-aware
datetime.datetime
or :class:`Timestamp` with :class:`Timestamp` and thetz
argument is now deprecated. Instead, use :meth:`Timestamp.tz_convert` (:issue:`23579`) - :func:`pandas.types.is_period` is deprecated in favor of pandas.types.is_period_dtype (:issue:`23917`)
- :func:`pandas.types.is_datetimetz` is deprecated in favor of pandas.types.is_datetime64tz (:issue:`23917`)
In the past, users could add or subtract integers or integer-dtypes arrays from :class:`Period`, :class:`PeriodIndex`, and in some cases :class:`Timestamp`, :class:`DatetimeIndex` and :class:`TimedeltaIndex`.
This usage is now deprecated. Instead add or subtract integer multiples of
the object's freq
attribute (:issue:`21939`)
Previous Behavior:
In [3]: per = pd.Period('2016Q1')
In [4]: per + 3
Out[4]: Period('2016Q4', 'Q-DEC')
In [5]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
In [6]: ts + 2
Out[6]: Timestamp('1994-05-06 14:15:16', freq='H')
In [7]: tdi = pd.timedelta_range('1D', periods=2)
In [8]: tdi - np.array([2, 1])
Out[8]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)
In [9]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
In [10]: dti + pd.Index([1, 2])
Out[10]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)
Current Behavior:
.. ipython:: python :okwarning: per = pd.Period('2016Q1') per + 3 per = pd.Period('2016Q1') per + 3 * per.freq ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour()) ts + 2 * ts.freq tdi = pd.timedelta_range('1D', periods=2) tdi - np.array([2 * tdi.freq, 1 * tdi.freq]) dti = pd.date_range('2001-01-01', periods=2, freq='7D') dti + pd.Index([1 * dti.freq, 2 * dti.freq])
- The
LongPanel
andWidePanel
classes have been removed (:issue:`10892`) - :meth:`Series.repeat` has renamed the
reps
argument torepeats
(:issue:`14645`) - Several private functions were removed from the (non-public) module
pandas.core.common
(:issue:`22001`) - Removal of the previously deprecated module
pandas.core.datetools
(:issue:`14105`, :issue:`14094`) - Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a
ValueError
(:issue:`14432`) - :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the
n
argument torepeats
(:issue:`14645`) - The
Series
constructor and.astype
method will now raise aValueError
if timestamp dtypes are passed in without a unit (e.g.np.datetime64
) for thedtype
parameter (:issue:`15987`) - Removal of the previously deprecated
as_indexer
keyword completely fromstr.match()
(:issue:`22356`, :issue:`6581`) - The modules
pandas.types
,pandas.computation
, andpandas.util.decorators
have been removed (:issue:`16157`, :issue:`16250`) - Removed the
pandas.formats.style
shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`) - :func:`pandas.pnow`, :func:`pandas.match`, :func:`pandas.groupby`, :func:`pd.get_store`,
pd.Expr
, andpd.Term
have been removed (:issue:`15538`, :issue:`15940`) - :meth:`Categorical.searchsorted` and :meth:`Series.searchsorted` have renamed the
v
argument tovalue
(:issue:`14645`) pandas.parser
,pandas.lib
, andpandas.tslib
have been removed (:issue:`15537`)- :meth:`TimedeltaIndex.searchsorted`, :meth:`DatetimeIndex.searchsorted`, and :meth:`PeriodIndex.searchsorted` have renamed the
key
argument tovalue
(:issue:`14645`) - :meth:`DataFrame.consolidate` and :meth:`Series.consolidate` have been removed (:issue:`15501`)
- Removal of the previously deprecated module
pandas.json
(:issue:`19944`) - The module
pandas.tools
has been removed (:issue:`15358`, :issue:`16005`) - :meth:`SparseArray.get_values` and :meth:`SparseArray.to_dense` have dropped the
fill
parameter (:issue:`14686`) - :meth:`DataFrame.sortlevel` and :meth:`Series.sortlevel` have been removed (:issue:`15099`)
- :meth:`SparseSeries.to_dense` has dropped the
sparse_only
parameter (:issue:`14686`) - :meth:`DataFrame.astype` and :meth:`Series.astype` have renamed the
raise_on_error
argument toerrors
(:issue:`14967`) is_sequence
,is_any_int_dtype
, andis_floating_dtype
have been removed frompandas.api.types
(:issue:`16163`, :issue:`16189`)
- Slicing Series and DataFrames with an monotonically increasing :class:`CategoricalIndex`
is now very fast and has speed comparable to slicing with an
Int64Index
. The speed increase is both when indexing by label (using .loc) and position(.iloc) (:issue:`20395`) Slicing a monotonically increasing :class:`CategoricalIndex` itself (i.e.ci[1000:2000]
) shows similar speed improvements as above (:issue:`21659`) - Improved performance of :func:`Series.describe` in case of numeric dtpyes (:issue:`21274`)
- Improved performance of :func:`pandas.core.groupby.GroupBy.rank` when dealing with tied rankings (:issue:`21237`)
- Improved performance of :func:`DataFrame.set_index` with columns consisting of :class:`Period` objects (:issue:`21582`, :issue:`21606`)
- Improved performance of membership checks in :class:`Categorical` and :class:`CategoricalIndex`
(i.e.
x in cat
-style checks are much faster). :meth:`CategoricalIndex.contains` is likewise much faster (:issue:`21369`, :issue:`21508`) - Improved performance of :meth:`HDFStore.groups` (and dependent functions like
:meth:`~HDFStore.keys`. (i.e.
x in store
checks are much faster) (:issue:`21372`) - Improved the performance of :func:`pandas.get_dummies` with
sparse=True
(:issue:`21997`) - Improved performance of :func:`IndexEngine.get_indexer_non_unique` for sorted, non-unique indexes (:issue:`9466`)
- Improved performance of :func:`PeriodIndex.unique` (:issue:`23083`)
- Improved performance of :func:`pd.concat` for Series objects (:issue:`23404`)
- Improved performance of :meth:`DatetimeIndex.normalize` and :meth:`Timestamp.normalize` for timezone naive or UTC datetimes (:issue:`23634`)
- Improved performance of :meth:`DatetimeIndex.tz_localize` and various
DatetimeIndex
attributes with dateutil UTC timezone (:issue:`23772`)
- Added sphinx spelling extension, updated documentation on how to use the spell check (:issue:`21079`)
- Bug in :meth:`Categorical.from_codes` where
NaN
values incodes
were silently converted to0
(:issue:`21767`). In the future this will raise aValueError
. Also changes the behavior of.from_codes([1.1, 2.0])
. - Bug in :meth:`Categorical.sort_values` where
NaN
values were always positioned in front regardless ofna_position
value. (:issue:`22556`). - Bug when indexing with a boolean-valued
Categorical
. Now a boolean-valuedCategorical
is treated as a boolean mask (:issue:`22665`) - Constructing a :class:`CategoricalIndex` with empty values and boolean categories was raising a
ValueError
after a change to dtype coercion (:issue:`22702`). - Bug in :meth:`Categorical.take` with a user-provided
fill_value
not encoding thefill_value
, which could result in aValueError
, incorrect results, or a segmentation fault (:issue:`23296`). - In meth:Series.unstack, specifying a
fill_value
not present in the categories now raises aTypeError
rather than ignoring thefill_value
(:issue:`23284`) - Bug when resampling :meth:`Dataframe.resample()` and aggregating on categorical data, the categorical dtype was getting lost. (:issue:`23227`)
- Fixed bug where two :class:`DateOffset` objects with different
normalize
attributes could evaluate as equal (:issue:`21404`) - Fixed bug where :meth:`Timestamp.resolution` incorrectly returned 1-microsecond
timedelta
instead of 1-nanosecond :class:`Timedelta` (:issue:`21336`, :issue:`21365`) - Bug in :func:`to_datetime` that did not consistently return an :class:`Index` when
box=True
was specified (:issue:`21864`) - Bug in :class:`DatetimeIndex` comparisons where string comparisons incorrectly raises
TypeError
(:issue:`22074`) - Bug in :class:`DatetimeIndex` comparisons when comparing against
timedelta64[ns]
dtyped arrays; in some casesTypeError
was incorrectly raised, in others it incorrectly failed to raise (:issue:`22074`) - Bug in :class:`DatetimeIndex` comparisons when comparing against object-dtyped arrays (:issue:`22074`)
- Bug in :class:`DataFrame` with
datetime64[ns]
dtype addition and subtraction withTimedelta
-like objects (:issue:`22005`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype addition and subtraction withDateOffset
objects returning anobject
dtype instead ofdatetime64[ns]
dtype (:issue:`21610`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype comparing againstNaT
incorrectly (:issue:`22242`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype subtractingTimestamp
-like object incorrectly returneddatetime64[ns]
dtype instead oftimedelta64[ns]
dtype (:issue:`8554`, :issue:`22163`) - Bug in :class:`DataFrame` with
datetime64[ns]
dtype subtractingnp.datetime64
object with non-nanosecond unit failing to convert to nanoseconds (:issue:`18874`, :issue:`22163`) - Bug in :class:`DataFrame` comparisons against
Timestamp
-like objects failing to raiseTypeError
for inequality checks with mismatched types (:issue:`8932`, :issue:`22163`) - Bug in :class:`DataFrame` with mixed dtypes including
datetime64[ns]
incorrectly raisingTypeError
on equality comparisons (:issue:`13128`, :issue:`22163`) - Bug in :meth:`DataFrame.eq` comparison against
NaT
incorrectly returningTrue
orNaN
(:issue:`15697`, :issue:`22163`) - Bug in :class:`DatetimeIndex` subtraction that incorrectly failed to raise
OverflowError
(:issue:`22492`, :issue:`22508`) - Bug in :class:`DatetimeIndex` incorrectly allowing indexing with
Timedelta
object (:issue:`20464`) - Bug in :class:`DatetimeIndex` where frequency was being set if original frequency was
None
(:issue:`22150`) - Bug in rounding methods of :class:`DatetimeIndex` (:meth:`~DatetimeIndex.round`, :meth:`~DatetimeIndex.ceil`, :meth:`~DatetimeIndex.floor`) and :class:`Timestamp` (:meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, :meth:`~Timestamp.floor`) could give rise to loss of precision (:issue:`22591`)
- Bug in :func:`to_datetime` with an :class:`Index` argument that would drop the
name
from the result (:issue:`21697`) - Bug in :class:`PeriodIndex` where adding or subtracting a :class:`timedelta` or :class:`Tick` object produced incorrect results (:issue:`22988`)
- Bug in :func:`date_range` when decrementing a start date to a past end date by a negative frequency (:issue:`23270`)
- Bug in :meth:`Series.min` which would return
NaN
instead ofNaT
when called on a series ofNaT
(:issue:`23282`) - Bug in :func:`DataFrame.combine` with datetimelike values raising a TypeError (:issue:`23079`)
- Bug in :func:`date_range` with frequency of
Day
or higher where dates sufficiently far in the future could wrap around to the past instead of raisingOutOfBoundsDatetime
(:issue:`14187`) - Bug in :class:`PeriodIndex` with attribute
freq.n
greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`) - Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`)
- Bug in :class:`Timestamp` constructor which would drop the frequency of an input :class:`Timestamp` (:issue:`22311`)
- Bug in :class:`DatetimeIndex` where calling
np.array(dtindex, dtype=object)
would incorrectly return an array oflong
objects (:issue:`23524`) - Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and dtype=object would incorrectly raise a
ValueError
(:issue:`23524`) - Bug in :class:`Index` where calling
np.array(dtindex, dtype=object)
on a timezone-naive :class:`DatetimeIndex` would return an array ofdatetime
objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`)
- Bug in :class:`DataFrame` with
timedelta64[ns]
dtype division byTimedelta
-like scalar incorrectly returningtimedelta64[ns]
dtype instead offloat64
dtype (:issue:`20088`, :issue:`22163`) - Bug in adding a :class:`Index` with object dtype to a :class:`Series` with
timedelta64[ns]
dtype incorrectly raising (:issue:`22390`) - Bug in multiplying a :class:`Series` with numeric dtype against a
timedelta
object (:issue:`22390`) - Bug in :class:`Series` with numeric dtype when adding or subtracting an an array or
Series
withtimedelta64
dtype (:issue:`22390`) - Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype
timedelta64
(:issue:`22390`) - Bug in :class:`TimedeltaIndex` incorrectly allowing indexing with
Timestamp
object (:issue:`20464`) - Fixed bug where subtracting :class:`Timedelta` from an object-dtyped array would raise
TypeError
(:issue:`21980`) - Fixed bug in adding a :class:`DataFrame` with all-timedelta64[ns] dtypes to a :class:`DataFrame` with all-integer dtypes returning incorrect results instead of raising
TypeError
(:issue:`22696`) - Bug in :class:`TimedeltaIndex` where adding a timezone-aware datetime scalar incorrectly returned a timezone-naive :class:`DatetimeIndex` (:issue:`23215`)
- Bug in :class:`TimedeltaIndex` where adding
np.timedelta64('NaT')
incorrectly returned an all-NaT :class:`DatetimeIndex` instead of an all-NaT :class:`TimedeltaIndex` (:issue:`23215`) - Bug in :class:`Timedelta` and :func:`to_timedelta()` have inconsistencies in supported unit string (:issue:`21762`)
- Bug in :meth:`DatetimeIndex.shift` where an
AssertionError
would raise when shifting across DST (:issue:`8616`) - Bug in :class:`Timestamp` constructor where passing an invalid timezone offset designator (
Z
) would not raise aValueError
(:issue:`8910`) - Bug in :meth:`Timestamp.replace` where replacing at a DST boundary would retain an incorrect offset (:issue:`7825`)
- Bug in :meth:`Series.replace` with
datetime64[ns, tz]
data when replacingNaT
(:issue:`11792`) - Bug in :class:`Timestamp` when passing different string date formats with a timezone offset would produce different timezone offsets (:issue:`12064`)
- Bug when comparing a tz-naive :class:`Timestamp` to a tz-aware :class:`DatetimeIndex` which would coerce the :class:`DatetimeIndex` to tz-naive (:issue:`12601`)
- Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`)
- Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp` to tz-aware (:issue:`13051`)
- Bug in :class:`Index` with
datetime64[ns, tz]
dtype that did not localize integer data correctly (:issue:`20964`) - Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`)
- Fixed bug where :meth:`DataFrame.describe` and :meth:`Series.describe` on tz-aware datetimes did not show first and last result (:issue:`21328`)
- Bug in :class:`DatetimeIndex` comparisons failing to raise
TypeError
when comparing timezone-awareDatetimeIndex
againstnp.datetime64
(:issue:`22074`) - Bug in
DataFrame
assignment with a timezone-aware scalar (:issue:`19843`) - Bug in :func:`DataFrame.asof` that raised a
TypeError
when attempting to compare tz-naive and tz-aware timestamps (:issue:`21194`) - Bug when constructing a :class:`DatetimeIndex` with :class:`Timestamp` constructed with the
replace
method across DST (:issue:`18785`) - Bug when setting a new value with :meth:`DataFrame.loc` with a :class:`DatetimeIndex` with a DST transition (:issue:`18308`, :issue:`20724`)
- Bug in :meth:`DatetimeIndex.unique` that did not re-localize tz-aware dates correctly (:issue:`21737`)
- Bug when indexing a :class:`Series` with a DST transition (:issue:`21846`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` where an
AmbiguousTimeError
orNonExistentTimeError
would raise if a timezone aware timeseries ended on a DST transition (:issue:`19375`, :issue:`10117`) - Bug in :meth:`DataFrame.drop` and :meth:`Series.drop` when specifying a tz-aware Timestamp key to drop from a :class:`DatetimeIndex` with a DST transition (:issue:`21761`)
- Bug in :class:`DatetimeIndex` constructor where :class:`NaT` and
dateutil.tz.tzlocal
would raise anOutOfBoundsDatetime
error (:issue:`23807`) - Bug in :meth:`DatetimeIndex.tz_localize` and :meth:`Timestamp.tz_localize` with
dateutil.tz.tzlocal
near a DST transition that would return an incorrectly localized datetime (:issue:`23807`) - Bug in :class:`Timestamp` constructor where a
dateutil.tz.tzutc
timezone passed with adatetime.datetime
argument would be converted to apytz.UTC
timezone (:issue:`23807`)
- Bug in :class:`FY5253` where date offsets could incorrectly raise an
AssertionError
in arithmetic operatons (:issue:`14774`) - Bug in :class:`DateOffset` where keyword arguments
week
andmilliseconds
were accepted and ignored. Passing these will now raiseValueError
(:issue:`19398`) - Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising
TypeError
(:issue:`23215`) - Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising
ValueError
instead of returningFalse
for equality checks andTrue
for not-equal checks (:issue:`23524`)
- Bug in :class:`Series`
__rmatmul__
doesn't support matrix vector multiplication (:issue:`21530`) - Bug in :func:`factorize` fails with read-only array (:issue:`12813`)
- Fixed bug in :func:`unique` handled signed zeros inconsistently: for some inputs 0.0 and -0.0 were treated as equal and for some inputs as different. Now they are treated as equal for all inputs (:issue:`21866`)
- Bug in :meth:`DataFrame.agg`, :meth:`DataFrame.transform` and :meth:`DataFrame.apply` where,
when supplied with a list of functions and
axis=1
(e.g.df.apply(['sum', 'mean'], axis=1)
), aTypeError
was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`). - Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`)
- Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning
object
dtype instead of integer dtype (:issue:`22047`, :issue:`22163`) - Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g.
df.apply('sum', min_count=1)
), aTypeError
was wrongly raised (:issue:`22376`) - Bug in :meth:`DataFrame.astype` to extension dtype may raise
AttributeError
(:issue:`22578`) - Bug in :class:`DataFrame` with
timedelta64[ns]
dtype arithmetic operations withndarray
with integer dtype incorrectly treating the narray astimedelta64[ns]
dtype (:issue:`23114`) - Bug in :meth:`Series.rpow` with object dtype
NaN
for1 ** NA
instead of1
(:issue:`22922`). - :meth:`Series.agg` can now handle numpy NaN-aware methods like :func:`numpy.nansum` (:issue:`19629`)
- Bug in :meth:`Series.rank` and :meth:`DataFrame.rank` when
pct=True
and more than 2:sup:24 rows are present resulted in percentages greater than 1.0 (:issue:`18271`)
- Bug in :meth:`Index.str.partition` was not nan-safe (:issue:`23558`).
- Bug in :meth:`Index.str.split` was not nan-safe (:issue:`23677`).
- Bug :func:`Series.str.contains` not respecting the
na
argument for aCategorical
dtypeSeries
(:issue:`22158`)
- Bug in the :class:`IntervalIndex` constructor where the
closed
parameter did not always override the inferredclosed
(:issue:`19370`) - Bug in the
IntervalIndex
repr where a trailing comma was missing after the list of intervals (:issue:`20611`) - Bug in :class:`Interval` where scalar arithmetic operations did not retain the
closed
value (:issue:`22313`) - Bug in :class:`IntervalIndex` where indexing with datetime-like values raised a
KeyError
(:issue:`20636`) - Bug in
IntervalTree
where data containingNaN
triggered a warning and resulted in incorrect indexing queries with :class:`IntervalIndex` (:issue:`23352`)
- The traceback from a
KeyError
when asking.loc
for a single missing label is now shorter and more clear (:issue:`21557`) - :class:`PeriodIndex` now emits a
KeyError
when a malformed string is looked up, which is consistent with the behavior of :class:`DateTimeIndex` (:issue:`22803`) - When
.ix
is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises aKeyError
, consistently with the case of a flat :class:`Int64Index`, rather than falling back to positional indexing (:issue:`21593`) - Bug in :meth:`DatetimeIndex.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
- Bug in :meth:`Series.reindex` when reindexing an empty series with a
datetime64[ns, tz]
dtype (:issue:`20869`) - Bug in :class:`DataFrame` when setting values with
.loc
and a timezone aware :class:`DatetimeIndex` (:issue:`11365`) DataFrame.__getitem__
now accepts dictionaries and dictionary keys as list-likes of labels, consistently withSeries.__getitem__
(:issue:`21294`)- Fixed
DataFrame[np.nan]
when columns are non-unique (:issue:`21428`) - Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
- Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`)
- Bug where mixed indexes wouldn't allow integers for
.at
(:issue:`19860`) Float64Index.get_loc
now raisesKeyError
when boolean key passed. (:issue:`19087`)- Bug in :meth:`DataFrame.loc` when indexing with an :class:`IntervalIndex` (:issue:`19977`)
- :class:`Index` no longer mangles
None
,NaN
andNaT
, i.e. they are treated as three different keys. However, for numeric Index all three are still coerced to aNaN
(:issue:`22332`) - Bug in scalar in Index if scalar is a float while the
Index
is of integer dtype (:issue:`22085`) - Bug in MultiIndex.set_levels when levels value is not subscriptable (:issue:`23273`)
- Bug where setting a timedelta column by
Index
causes it to be casted to double, and therefore lose precision (:issue:`23511`) - Bug in :func:`Index.union` and :func:`Index.intersection` where name of the
Index
of the result was not computed correctly for certain cases (:issue:`9943`, :issue:`9862`) - Bug in :class:`Index` slicing with boolean :class:`Index` may raise
TypeError
(:issue:`22533`)
- Bug in :func:`DataFrame.fillna` where a
ValueError
would raise when one column contained adatetime64[ns, tz]
dtype (:issue:`15522`) - Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
- :func:`Series.isin` now treats all NaN-floats as equal also for np.object-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`)
- :func:`unique` no longer mangles NaN-floats and the
NaT
-object for np.object-dtype, i.e.NaT
is no longer coerced to a NaN-value and is treated as a different entity. (:issue:`22295`)
- Removed compatibility for :class:`MultiIndex` pickles prior to version 0.8.0; compatibility with :class:`MultiIndex` pickles from version 0.13 forward is maintained (:issue:`21654`)
- :meth:`MultiIndex.get_loc_level` (and as a consequence,
.loc
on aSeries
orDataFrame
with a :class:`MultiIndex` index) will now raise aKeyError
, rather than returning an emptyslice
, if asked a label which is present in thelevels
but is unused (:issue:`22221`) - Fix
TypeError
in Python 3 when creating :class:`MultiIndex` in which some levels have mixed types, e.g. when some labels are tuples (:issue:`15457`)
There was bug in :func:`read_excel` and :func:`read_csv` with the Python
engine, where missing values turned to 'nan'
with dtype=str
and
na_filter=True
. Now, these missing values are converted to the string
missing indicator, np.nan
. (:issue 20377)
.. ipython:: python :suppress: from pandas.compat import StringIO
Previous Behavior:
In [5]: data = 'a,b,c\n1,,3\n4,5,6'
In [6]: df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
In [7]: df.loc[0, 'b']
Out[7]:
'nan'
Current Behavior:
.. ipython:: python data = 'a,b,c\n1,,3\n4,5,6' df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True) df.loc[0, 'b']
Notice how we now instead output np.nan
itself instead of a stringified form of it.
- Bug in :meth:`to_sql` when writing timezone aware data (
datetime64[ns, tz]
dtype) would raise aTypeError
(:issue:`9086`) - Bug in :meth:`to_sql` where a naive DatetimeIndex would be written as
TIMESTAMP WITH TIMEZONE
type in supported databases, e.g. PostgreSQL (:issue:`23510`) - Bug in :meth:`read_excel()` when
parse_cols
is specified with an empty dataset (:issue:`9208`) - :func:`read_html()` no longer ignores all-whitespace
<tr>
within<thead>
when considering theskiprows
andheader
arguments. Previously, users had to decrease theirheader
andskiprows
values on such tables to work around the issue. (:issue:`21641`) - :func:`read_excel()` will correctly show the deprecation warning for previously deprecated
sheetname
(:issue:`17994`) - :func:`read_csv()` and func:read_table() will throw
UnicodeError
and not coredump on badly encoded strings (:issue:`22748`) - :func:`read_csv()` will correctly parse timezone-aware datetimes (:issue:`22256`)
- Bug in :func:`read_csv()` in which memory management was prematurely optimized for the C engine when the data was being read in chunks (:issue:`23509`)
- Bug in :func:`read_csv()` in unnamed columns were being improperly identified when extracting a multi-index (:issue:`23687`)
- :func:`read_sas()` will parse numbers in sas7bdat-files that have width less than 8 bytes correctly. (:issue:`21616`)
- :func:`read_sas()` will correctly parse sas7bdat files with many columns (:issue:`22628`)
- :func:`read_sas()` will correctly parse sas7bdat files with data page types having also bit 7 set (so page type is 128 + 256 = 384) (:issue:`16615`)
- Bug in :meth:`detect_client_encoding` where potential
IOError
goes unhandled when importing in a mod_wsgi process due to restricted access to stdout. (:issue:`21552`) - Bug in :func:`to_html()` with
index=False
misses truncation indicators (...) on truncated DataFrame (:issue:`15019`, :issue:`22783`) - Bug in :func:`DataFrame.to_string()` that broke column alignment when
index=False
and width of first column's values is greater than the width of first column's header (:issue:`16839`, :issue:`13032`) - Bug in :func:`DataFrame.to_string()` that caused representations of :class:`DataFrame` to not take up the whole window (:issue:`22984`)
- Bug in :func:`DataFrame.to_csv` where a single level MultiIndex incorrectly wrote a tuple. Now just the value of the index is written (:issue:`19589`).
- Bug in :meth:`HDFStore.append` when appending a :class:`DataFrame` with an empty string column and
min_itemsize
< 8 (:issue:`12242`) - Bug in :func:`read_csv()` in which memory leaks occurred in the C engine when parsing
NaN
values due to insufficient cleanup on completion or error (:issue:`21353`) - Bug in :func:`read_csv()` in which incorrect error messages were being raised when
skipfooter
was passed in along withnrows
,iterator
, orchunksize
(:issue:`23711`) - Bug in :meth:`read_csv()` in which :class:`MultiIndex` index names were being improperly handled in the cases when they were not provided (:issue:`23484`)
- Bug in :meth:`read_csv()` in which unnecessary warnings were being raised when the dialect's values conflicted with the default arguments (:issue:`23761`)
- Bug in :meth:`read_html()` in which the error message was not displaying the valid flavors when an invalid one was provided (:issue:`23549`)
- Bug in :meth:`read_excel()` in which extraneous header names were extracted, even though none were specified (:issue:`11733`)
- Bug in :meth:`read_excel()` in which
index_col=None
was not being respected and parsing index columns anyway (:issue:`20480`) - Bug in :meth:`read_excel()` in which
usecols
was not being validated for proper column names when passed in as a string (:issue:`20480`) - :func:`DataFrame.to_string()`, :func:`DataFrame.to_html()`, :func:`DataFrame.to_latex()` will correctly format output when a string is passed as the
float_format
argument (:issue:`21625`, :issue:`22270`)
- Bug in :func:`DataFrame.plot.scatter` and :func:`DataFrame.plot.hexbin` caused x-axis label and ticklabels to disappear when colorbar was on in IPython inline backend (:issue:`10611`, :issue:`10678`, and :issue:`20455`)
- Bug in plotting a Series with datetimes using :func:`matplotlib.axes.Axes.scatter` (:issue:`22039`)
- Bug in :func:`pandas.core.groupby.GroupBy.first` and :func:`pandas.core.groupby.GroupBy.last` with
as_index=False
leading to the loss of timezone information (:issue:`15884`) - Bug in :meth:`DatetimeIndex.resample` when downsampling across a DST boundary (:issue:`8531`)
- Bug where
ValueError
is wrongly raised when calling :func:`~pandas.core.groupby.SeriesGroupBy.count` method of aSeriesGroupBy
when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`). - Multiple bugs in :func:`pandas.core.Rolling.min` with
closed='left'
and a datetime-like index leading to incorrect results and also segfault. (:issue:`21704`) - Bug in :meth:`Resampler.apply` when passing postiional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing
numpy.timedelta64
toloffset
kwarg (:issue:`7687`). - Bug in :meth:`Resampler.asfreq` when frequency of
TimedeltaIndex
is a subperiod of a new frequency (:issue:`13022`). - Bug in :meth:`SeriesGroupBy.mean` when values were integral but could not fit inside of int64, overflowing instead. (:issue:`22487`)
- :func:`RollingGroupby.agg` and :func:`ExpandingGroupby.agg` now support multiple aggregation functions as parameters (:issue:`15072`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` when resampling by a weekly offset (
'W'
) across a DST transition (:issue:`9119`, :issue:`21459`) - Bug in :meth:`DataFrame.expanding` in which the
axis
argument was not being respected during aggregations (:issue:`23372`) - Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.transform` which caused missing values when the input function can accept a :class:`DataFrame` but renames it (:issue:`23455`).
- Bug in :func:`pandas.core.groupby.GroupBy.nth` where column order was not always preserved (:issue:`20760`)
- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`)
- Bug in :func:`pandas.concat` when joining only Series the names argument of concat is no longer ignored (:issue:`23490`)
- Bug in :meth:`Series.combine_first` with
datetime64[ns, tz]
dtype which would return tz-naive result (:issue:`21469`) - Bug in :meth:`Series.where` and :meth:`DataFrame.where` with
datetime64[ns, tz]
dtype (:issue:`21546`) - Bug in :meth:`DataFrame.where` with an empty DataFrame and empty
cond
having non-bool dtype (:issue:`21947`) - Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with
list
conditionals (:issue:`21891`) - Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds
datetime64[ns, tz]
(:issue:`20380`) - :func:`pandas.core.groupby.GroupBy.rank` now raises a
ValueError
when an invalid value is passed for argumentna_option
(:issue:`22124`) - Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`)
- Bug in :meth:`DataFrame.replace` raises
RecursionError
when replacing empty lists (:issue:`22083`) - Bug in :meth:`Series.replace` and meth:DataFrame.replace when dict is used as the
to_replace
value and one key in the dict is is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`) - Bug in :meth:`DataFrame.drop_duplicates` for empty
DataFrame
which incorrectly raises an error (:issue:`20516`) - Bug in :func:`pandas.wide_to_long` when a string is passed to the stubnames argument and a column name is a substring of that stubname (:issue:`22468`)
- Bug in :func:`merge` when merging
datetime64[ns, tz]
data that contained a DST transition (:issue:`18885`) - Bug in :func:`merge_asof` when merging on float values within defined tolerance (:issue:`22981`)
- Bug in :func:`pandas.concat` when concatenating a multicolumn DataFrame with tz-aware data against a DataFrame with a different number of columns (:issue:`22796`)
- Bug in :func:`merge_asof` where confusing error message raised when attempting to merge with missing values (:issue:`23189`)
- Bug in :meth:`DataFrame.nsmallest` and :meth:`DataFrame.nlargest` for dataframes that have a :class:`MultiIndex` for columns (:issue:`23033`).
- Bug in :func:`pandas.melt` when passing column names that are not present in
DataFrame
(:issue:`23575`) - Bug in :meth:`DataFrame.append` with a :class:`Series` with a dateutil timezone would raise a
TypeError
(:issue:`23682`) - Bug in
Series
construction when passing no data anddtype=str
(:issue:`22477`)
- Updating a boolean, datetime, or timedelta column to be Sparse now works (:issue:`22367`)
- Bug in :meth:`Series.to_sparse` with Series already holding sparse data not constructing properly (:issue:`22389`)
- Providing a
sparse_index
to the SparseArray constructor no longer defaults the na-value tonp.nan
for all dtypes. The correct na_value fordata.dtype
is now used. - Bug in
SparseArray.nbytes
under-reporting its memory usage by not including the size of its sparse index. - Improved performance of :meth:`Series.shift` for non-NA
fill_value
, as values are no longer converted to a dense array. - Bug in
DataFrame.groupby
not includingfill_value
in the groups for non-NAfill_value
when grouping by a sparse column (:issue:`5078`) - Bug in unary inversion operator (
~
) on aSparseSeries
with boolean values. The performance of this has also been improved (:issue:`22835`) - Bug in :meth:`SparseArary.unique` not returning the unique values (:issue:`19595`)
- Bug in :meth:`SparseArray.nonzero` and :meth:`SparseDataFrame.dropna` returning shifted/incorrect results (:issue:`21172`)
- Building pandas for development now requires
cython >= 0.28.2
(:issue:`21688`) - Testing pandas now requires
hypothesis>=3.58
. You can find the Hypothesis docs here, and a pandas-specific introduction :ref:`in the contributing guide <using-hypothesis>`. (:issue:`22280`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a
text_color_threshold
parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`) - Require at least 0.28.2 version of
cython
to support read-only memoryviews (:issue:`21688`) - :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with
axis=None
(:issue:`15204`) - :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with
axis=None
and setting clipping range withvmin
andvmax
(:issue:`21548` and :issue:`21526`).NaN
values are also handled properly. - Logical operations
&, |, ^
between :class:`Series` and :class:`Index` will no longer raiseValueError
(:issue:`22092`) - Checking PEP 3141 numbers in :func:`~pandas.api.types.is_scalar` function returns
True
(:issue:`22903`) - Bug in :meth:`DataFrame.combine_first` in which column types were unexpectedly converted to float (:issue:`20699`)
.. contributors:: v0.23.4..HEAD