forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathskiplist.pyx
147 lines (110 loc) · 4.11 KB
/
skiplist.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Cython version of IndexableSkiplist, for implementing moving median
# with O(log n) updates
# Original author: Raymond Hettinger
# Original license: MIT
# Link: http://code.activestate.com/recipes/576930/
# Cython version: Wes McKinney
cdef extern from "math.h":
double log(double x)
# MSVC does not have log2!
cdef double Log2(double x):
return log(x) / log(2.)
cimport numpy as np
import numpy as np
from random import random
# initialize numpy
np.import_array()
# TODO: optimize this, make less messy
cdef class Node:
cdef public:
double_t value
list next
list width
def __init__(self, double_t value, list next, list width):
self.value = value
self.next = next
self.width = width
# Singleton terminator node
NIL = Node(np.inf, [], [])
cdef class IndexableSkiplist:
"""
Sorted collection supporting O(lg n) insertion, removal, and
lookup by rank.
"""
cdef:
Py_ssize_t size, maxlevels
Node head
def __init__(self, expected_size=100):
self.size = 0
self.maxlevels = int(1 + Log2(expected_size))
self.head = Node(np.NaN, [NIL] * self.maxlevels, [1] * self.maxlevels)
def __len__(self):
return self.size
def __getitem__(self, i):
return self.get(i)
cpdef get(self, Py_ssize_t i):
cdef Py_ssize_t level
cdef Node node
node = self.head
i += 1
for level in range(self.maxlevels - 1, -1, -1):
while node.width[level] <= i:
i -= node.width[level]
node = node.next[level]
return node.value
cpdef insert(self, double value):
cdef Py_ssize_t level, steps, d
cdef Node node, prevnode, newnode, next_at_level, tmp
cdef list chain, steps_at_level
# find first node on each level where node.next[levels].value > value
chain = [None] * self.maxlevels
steps_at_level = [0] * self.maxlevels
node = self.head
for level in range(self.maxlevels - 1, -1, -1):
next_at_level = node.next[level]
while next_at_level.value <= value:
steps_at_level[level] = (steps_at_level[level] +
node.width[level])
node = next_at_level
next_at_level = node.next[level]
chain[level] = node
# insert a link to the newnode at each level
d = min(self.maxlevels, 1 - int(Log2(random())))
newnode = Node(value, [None] * d, [None] * d)
steps = 0
for level in range(d):
prevnode = chain[level]
newnode.next[level] = prevnode.next[level]
prevnode.next[level] = newnode
newnode.width[level] = (prevnode.width[level] - steps)
prevnode.width[level] = steps + 1
steps += steps_at_level[level]
for level in range(d, self.maxlevels):
(<Node> chain[level]).width[level] += 1
self.size += 1
cpdef remove(self, double value):
cdef Py_ssize_t level, d
cdef Node node, prevnode, tmpnode, next_at_level
cdef list chain
# find first node on each level where node.next[levels].value >= value
chain = [None] * self.maxlevels
node = self.head
for level in range(self.maxlevels - 1, -1, -1):
next_at_level = node.next[level]
while next_at_level.value < value:
node = next_at_level
next_at_level = node.next[level]
chain[level] = node
if value != (<Node> (<Node> (<Node> chain[0]).next)[0]).value:
raise KeyError('Not Found')
# remove one link at each level
d = len((<Node> (<Node> (<Node> chain[0]).next)[0]).next)
for level in range(d):
prevnode = chain[level]
tmpnode = prevnode.next[level]
prevnode.width[level] += tmpnode.width[level] - 1
prevnode.next[level] = tmpnode.next[level]
for level in range(d, self.maxlevels):
tmpnode = chain[level]
tmpnode.width[level] -= 1
self.size -= 1