forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdim2.py
235 lines (181 loc) · 7.59 KB
/
dim2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Tests for 2D compatibility.
"""
import numpy as np
import pytest
import pandas as pd
from pandas.tests.extension.base.base import BaseExtensionTests
class Dim2CompatTests(BaseExtensionTests):
def test_swapaxes(self, data):
arr2d = data.repeat(2).reshape(-1, 2)
result = arr2d.swapaxes(0, 1)
expected = arr2d.T
self.assert_extension_array_equal(result, expected)
def test_delete_2d(self, data):
arr2d = data.repeat(3).reshape(-1, 3)
# axis = 0
result = arr2d.delete(1, axis=0)
expected = data.delete(1).repeat(3).reshape(-1, 3)
self.assert_extension_array_equal(result, expected)
# axis = 1
result = arr2d.delete(1, axis=1)
expected = data.repeat(2).reshape(-1, 2)
self.assert_extension_array_equal(result, expected)
def test_take_2d(self, data):
arr2d = data.reshape(-1, 1)
result = arr2d.take([0, 0, -1], axis=0)
expected = data.take([0, 0, -1]).reshape(-1, 1)
self.assert_extension_array_equal(result, expected)
def test_repr_2d(self, data):
# this could fail in a corner case where an element contained the name
res = repr(data.reshape(1, -1))
assert res.count(f"<{type(data).__name__}") == 1
res = repr(data.reshape(-1, 1))
assert res.count(f"<{type(data).__name__}") == 1
def test_reshape(self, data):
arr2d = data.reshape(-1, 1)
assert arr2d.shape == (data.size, 1)
assert len(arr2d) == len(data)
arr2d = data.reshape((-1, 1))
assert arr2d.shape == (data.size, 1)
assert len(arr2d) == len(data)
with pytest.raises(ValueError):
data.reshape((data.size, 2))
with pytest.raises(ValueError):
data.reshape(data.size, 2)
def test_getitem_2d(self, data):
arr2d = data.reshape(1, -1)
result = arr2d[0]
self.assert_extension_array_equal(result, data)
with pytest.raises(IndexError):
arr2d[1]
with pytest.raises(IndexError):
arr2d[-2]
result = arr2d[:]
self.assert_extension_array_equal(result, arr2d)
result = arr2d[:, :]
self.assert_extension_array_equal(result, arr2d)
result = arr2d[:, 0]
expected = data[[0]]
self.assert_extension_array_equal(result, expected)
# dimension-expanding getitem on 1D
result = data[:, np.newaxis]
self.assert_extension_array_equal(result, arr2d.T)
def test_iter_2d(self, data):
arr2d = data.reshape(1, -1)
objs = list(iter(arr2d))
assert len(objs) == arr2d.shape[0]
for obj in objs:
assert isinstance(obj, type(data))
assert obj.dtype == data.dtype
assert obj.ndim == 1
assert len(obj) == arr2d.shape[1]
def test_tolist_2d(self, data):
arr2d = data.reshape(1, -1)
result = arr2d.tolist()
expected = [data.tolist()]
assert isinstance(result, list)
assert all(isinstance(x, list) for x in result)
assert result == expected
def test_concat_2d(self, data):
left = data.reshape(-1, 1)
right = left.copy()
# axis=0
result = left._concat_same_type([left, right], axis=0)
expected = data._concat_same_type([data, data]).reshape(-1, 1)
self.assert_extension_array_equal(result, expected)
# axis=1
result = left._concat_same_type([left, right], axis=1)
expected = data.repeat(2).reshape(-1, 2)
self.assert_extension_array_equal(result, expected)
# axis > 1 -> invalid
with pytest.raises(ValueError):
left._concat_same_type([left, right], axis=2)
@pytest.mark.parametrize("method", ["backfill", "pad"])
def test_fillna_2d_method(self, data_missing, method):
arr = data_missing.repeat(2).reshape(2, 2)
assert arr[0].isna().all()
assert not arr[1].isna().any()
result = arr.fillna(method=method)
expected = data_missing.fillna(method=method).repeat(2).reshape(2, 2)
self.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
def test_reductions_2d_axis_none(self, data, method, request):
if not hasattr(data, method):
pytest.skip("test is not applicable for this type/dtype")
arr2d = data.reshape(1, -1)
err_expected = None
err_result = None
try:
expected = getattr(data, method)()
except Exception as err:
# if the 1D reduction is invalid, the 2D reduction should be as well
err_expected = err
try:
result = getattr(arr2d, method)(axis=None)
except Exception as err2:
err_result = err2
else:
result = getattr(arr2d, method)(axis=None)
if err_result is not None or err_expected is not None:
assert type(err_result) == type(err_expected)
return
assert result == expected # TODO: or matching NA
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
def test_reductions_2d_axis0(self, data, method, request):
if not hasattr(data, method):
pytest.skip("test is not applicable for this type/dtype")
arr2d = data.reshape(1, -1)
kwargs = {}
if method == "std":
# pass ddof=0 so we get all-zero std instead of all-NA std
kwargs["ddof"] = 0
try:
result = getattr(arr2d, method)(axis=0, **kwargs)
except Exception as err:
try:
getattr(data, method)()
except Exception as err2:
assert type(err) == type(err2)
return
else:
raise AssertionError("Both reductions should raise or neither")
if method in ["mean", "median", "sum", "prod"]:
# std and var are not dtype-preserving
expected = data
if method in ["sum", "prod"] and data.dtype.kind in ["i", "u"]:
# FIXME: kludge
if data.dtype.kind == "i":
dtype = pd.Int64Dtype()
else:
dtype = pd.UInt64Dtype()
expected = data.astype(dtype)
assert type(expected) == type(data), type(expected)
assert dtype == expected.dtype
self.assert_extension_array_equal(result, expected)
elif method == "std":
self.assert_extension_array_equal(result, data - data)
# punt on method == "var"
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
def test_reductions_2d_axis1(self, data, method, request):
if not hasattr(data, method):
pytest.skip("test is not applicable for this type/dtype")
arr2d = data.reshape(1, -1)
try:
result = getattr(arr2d, method)(axis=1)
except Exception as err:
try:
getattr(data, method)()
except Exception as err2:
assert type(err) == type(err2)
return
else:
raise AssertionError("Both reductions should raise or neither")
# not necessarily type/dtype-preserving, so weaker assertions
assert result.shape == (1,)
expected_scalar = getattr(data, method)()
if pd.isna(result[0]):
# TODO: require matching NA
assert pd.isna(expected_scalar), expected_scalar
else:
assert result[0] == expected_scalar