forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_axis_select_reindex.py
1181 lines (928 loc) · 44.6 KB
/
test_axis_select_reindex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from __future__ import print_function
import pytest
from datetime import datetime
from numpy import random
import numpy as np
from pandas.compat import lrange, lzip, u
from pandas import (compat, DataFrame, Series, Index, MultiIndex, Categorical,
date_range, isna)
import pandas as pd
from pandas.util.testing import assert_frame_equal
from pandas.errors import PerformanceWarning
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameSelectReindex(TestData):
# These are specific reindex-based tests; other indexing tests should go in
# test_indexing
def test_drop_names(self):
df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]],
index=['a', 'b', 'c'],
columns=['d', 'e', 'f'])
df.index.name, df.columns.name = 'first', 'second'
df_dropped_b = df.drop('b')
df_dropped_e = df.drop('e', axis=1)
df_inplace_b, df_inplace_e = df.copy(), df.copy()
df_inplace_b.drop('b', inplace=True)
df_inplace_e.drop('e', axis=1, inplace=True)
for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e):
assert obj.index.name == 'first'
assert obj.columns.name == 'second'
assert list(df.columns) == ['d', 'e', 'f']
pytest.raises(KeyError, df.drop, ['g'])
pytest.raises(KeyError, df.drop, ['g'], 1)
# errors = 'ignore'
dropped = df.drop(['g'], errors='ignore')
expected = Index(['a', 'b', 'c'], name='first')
tm.assert_index_equal(dropped.index, expected)
dropped = df.drop(['b', 'g'], errors='ignore')
expected = Index(['a', 'c'], name='first')
tm.assert_index_equal(dropped.index, expected)
dropped = df.drop(['g'], axis=1, errors='ignore')
expected = Index(['d', 'e', 'f'], name='second')
tm.assert_index_equal(dropped.columns, expected)
dropped = df.drop(['d', 'g'], axis=1, errors='ignore')
expected = Index(['e', 'f'], name='second')
tm.assert_index_equal(dropped.columns, expected)
# GH 16398
dropped = df.drop([], errors='ignore')
expected = Index(['a', 'b', 'c'], name='first')
tm.assert_index_equal(dropped.index, expected)
def test_drop_col_still_multiindex(self):
arrays = [['a', 'b', 'c', 'top'],
['', '', '', 'OD'],
['', '', '', 'wx']]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(3, 4), columns=index)
del df[('a', '', '')]
assert(isinstance(df.columns, MultiIndex))
def test_drop(self):
simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]})
assert_frame_equal(simple.drop("A", axis=1), simple[['B']])
assert_frame_equal(simple.drop(["A", "B"], axis='columns'),
simple[[]])
assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.loc[[2], :])
assert_frame_equal(simple.drop(
[0, 3], axis='index'), simple.loc[[1, 2], :])
pytest.raises(KeyError, simple.drop, 5)
pytest.raises(KeyError, simple.drop, 'C', 1)
pytest.raises(KeyError, simple.drop, [1, 5])
pytest.raises(KeyError, simple.drop, ['A', 'C'], 1)
# errors = 'ignore'
assert_frame_equal(simple.drop(5, errors='ignore'), simple)
assert_frame_equal(simple.drop([0, 5], errors='ignore'),
simple.loc[[1, 2, 3], :])
assert_frame_equal(simple.drop('C', axis=1, errors='ignore'), simple)
assert_frame_equal(simple.drop(['A', 'C'], axis=1, errors='ignore'),
simple[['B']])
# non-unique - wheee!
nu_df = DataFrame(lzip(range(3), range(-3, 1), list('abc')),
columns=['a', 'a', 'b'])
assert_frame_equal(nu_df.drop('a', axis=1), nu_df[['b']])
assert_frame_equal(nu_df.drop('b', axis='columns'), nu_df['a'])
assert_frame_equal(nu_df.drop([]), nu_df) # GH 16398
nu_df = nu_df.set_index(pd.Index(['X', 'Y', 'X']))
nu_df.columns = list('abc')
assert_frame_equal(nu_df.drop('X', axis='rows'), nu_df.loc[["Y"], :])
assert_frame_equal(nu_df.drop(['X', 'Y'], axis=0), nu_df.loc[[], :])
# inplace cache issue
# GH 5628
df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
expected = df[~(df.b > 0)]
df.drop(labels=df[df.b > 0].index, inplace=True)
assert_frame_equal(df, expected)
def test_drop_multiindex_not_lexsorted(self):
# GH 11640
# define the lexsorted version
lexsorted_mi = MultiIndex.from_tuples(
[('a', ''), ('b1', 'c1'), ('b2', 'c2')], names=['b', 'c'])
lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi)
assert lexsorted_df.columns.is_lexsorted()
# define the non-lexsorted version
not_lexsorted_df = DataFrame(columns=['a', 'b', 'c', 'd'],
data=[[1, 'b1', 'c1', 3],
[1, 'b2', 'c2', 4]])
not_lexsorted_df = not_lexsorted_df.pivot_table(
index='a', columns=['b', 'c'], values='d')
not_lexsorted_df = not_lexsorted_df.reset_index()
assert not not_lexsorted_df.columns.is_lexsorted()
# compare the results
tm.assert_frame_equal(lexsorted_df, not_lexsorted_df)
expected = lexsorted_df.drop('a', axis=1)
with tm.assert_produces_warning(PerformanceWarning):
result = not_lexsorted_df.drop('a', axis=1)
tm.assert_frame_equal(result, expected)
def test_drop_api_equivalence(self):
# equivalence of the labels/axis and index/columns API's (GH12392)
df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]],
index=['a', 'b', 'c'],
columns=['d', 'e', 'f'])
res1 = df.drop('a')
res2 = df.drop(index='a')
tm.assert_frame_equal(res1, res2)
res1 = df.drop('d', 1)
res2 = df.drop(columns='d')
tm.assert_frame_equal(res1, res2)
res1 = df.drop(labels='e', axis=1)
res2 = df.drop(columns='e')
tm.assert_frame_equal(res1, res2)
res1 = df.drop(['a'], axis=0)
res2 = df.drop(index=['a'])
tm.assert_frame_equal(res1, res2)
res1 = df.drop(['a'], axis=0).drop(['d'], axis=1)
res2 = df.drop(index=['a'], columns=['d'])
tm.assert_frame_equal(res1, res2)
with pytest.raises(ValueError):
df.drop(labels='a', index='b')
with pytest.raises(ValueError):
df.drop(labels='a', columns='b')
with pytest.raises(ValueError):
df.drop(axis=1)
def test_merge_join_different_levels(self):
# GH 9455
# first dataframe
df1 = DataFrame(columns=['a', 'b'], data=[[1, 11], [0, 22]])
# second dataframe
columns = MultiIndex.from_tuples([('a', ''), ('c', 'c1')])
df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]])
# merge
columns = ['a', 'b', ('c', 'c1')]
expected = DataFrame(columns=columns, data=[[1, 11, 33], [0, 22, 44]])
with tm.assert_produces_warning(UserWarning):
result = pd.merge(df1, df2, on='a')
tm.assert_frame_equal(result, expected)
# join, see discussion in GH 12219
columns = ['a', 'b', ('a', ''), ('c', 'c1')]
expected = DataFrame(columns=columns,
data=[[1, 11, 0, 44], [0, 22, 1, 33]])
with tm.assert_produces_warning(UserWarning):
result = df1.join(df2, on='a')
tm.assert_frame_equal(result, expected)
def test_reindex(self):
newFrame = self.frame.reindex(self.ts1.index)
for col in newFrame.columns:
for idx, val in compat.iteritems(newFrame[col]):
if idx in self.frame.index:
if np.isnan(val):
assert np.isnan(self.frame[col][idx])
else:
assert val == self.frame[col][idx]
else:
assert np.isnan(val)
for col, series in compat.iteritems(newFrame):
assert tm.equalContents(series.index, newFrame.index)
emptyFrame = self.frame.reindex(Index([]))
assert len(emptyFrame.index) == 0
# Cython code should be unit-tested directly
nonContigFrame = self.frame.reindex(self.ts1.index[::2])
for col in nonContigFrame.columns:
for idx, val in compat.iteritems(nonContigFrame[col]):
if idx in self.frame.index:
if np.isnan(val):
assert np.isnan(self.frame[col][idx])
else:
assert val == self.frame[col][idx]
else:
assert np.isnan(val)
for col, series in compat.iteritems(nonContigFrame):
assert tm.equalContents(series.index, nonContigFrame.index)
# corner cases
# Same index, copies values but not index if copy=False
newFrame = self.frame.reindex(self.frame.index, copy=False)
assert newFrame.index is self.frame.index
# length zero
newFrame = self.frame.reindex([])
assert newFrame.empty
assert len(newFrame.columns) == len(self.frame.columns)
# length zero with columns reindexed with non-empty index
newFrame = self.frame.reindex([])
newFrame = newFrame.reindex(self.frame.index)
assert len(newFrame.index) == len(self.frame.index)
assert len(newFrame.columns) == len(self.frame.columns)
# pass non-Index
newFrame = self.frame.reindex(list(self.ts1.index))
tm.assert_index_equal(newFrame.index, self.ts1.index)
# copy with no axes
result = self.frame.reindex()
assert_frame_equal(result, self.frame)
assert result is not self.frame
def test_reindex_nan(self):
df = pd.DataFrame([[1, 2], [3, 5], [7, 11], [9, 23]],
index=[2, np.nan, 1, 5],
columns=['joe', 'jim'])
i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1]
assert_frame_equal(df.reindex(i), df.iloc[j])
df.index = df.index.astype('object')
assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False)
# GH10388
df = pd.DataFrame({'other': ['a', 'b', np.nan, 'c'],
'date': ['2015-03-22', np.nan,
'2012-01-08', np.nan],
'amount': [2, 3, 4, 5]})
df['date'] = pd.to_datetime(df.date)
df['delta'] = (pd.to_datetime('2015-06-18') - df['date']).shift(1)
left = df.set_index(['delta', 'other', 'date']).reset_index()
right = df.reindex(columns=['delta', 'other', 'date', 'amount'])
assert_frame_equal(left, right)
def test_reindex_name_remains(self):
s = Series(random.rand(10))
df = DataFrame(s, index=np.arange(len(s)))
i = Series(np.arange(10), name='iname')
df = df.reindex(i)
assert df.index.name == 'iname'
df = df.reindex(Index(np.arange(10), name='tmpname'))
assert df.index.name == 'tmpname'
s = Series(random.rand(10))
df = DataFrame(s.T, index=np.arange(len(s)))
i = Series(np.arange(10), name='iname')
df = df.reindex(columns=i)
assert df.columns.name == 'iname'
def test_reindex_int(self):
smaller = self.intframe.reindex(self.intframe.index[::2])
assert smaller['A'].dtype == np.int64
bigger = smaller.reindex(self.intframe.index)
assert bigger['A'].dtype == np.float64
smaller = self.intframe.reindex(columns=['A', 'B'])
assert smaller['A'].dtype == np.int64
def test_reindex_like(self):
other = self.frame.reindex(index=self.frame.index[:10],
columns=['C', 'B'])
assert_frame_equal(other, self.frame.reindex_like(other))
def test_reindex_columns(self):
new_frame = self.frame.reindex(columns=['A', 'B', 'E'])
tm.assert_series_equal(new_frame['B'], self.frame['B'])
assert np.isnan(new_frame['E']).all()
assert 'C' not in new_frame
# Length zero
new_frame = self.frame.reindex(columns=[])
assert new_frame.empty
def test_reindex_columns_method(self):
# GH 14992, reindexing over columns ignored method
df = DataFrame(data=[[11, 12, 13], [21, 22, 23], [31, 32, 33]],
index=[1, 2, 4],
columns=[1, 2, 4],
dtype=float)
# default method
result = df.reindex(columns=range(6))
expected = DataFrame(data=[[np.nan, 11, 12, np.nan, 13, np.nan],
[np.nan, 21, 22, np.nan, 23, np.nan],
[np.nan, 31, 32, np.nan, 33, np.nan]],
index=[1, 2, 4],
columns=range(6),
dtype=float)
assert_frame_equal(result, expected)
# method='ffill'
result = df.reindex(columns=range(6), method='ffill')
expected = DataFrame(data=[[np.nan, 11, 12, 12, 13, 13],
[np.nan, 21, 22, 22, 23, 23],
[np.nan, 31, 32, 32, 33, 33]],
index=[1, 2, 4],
columns=range(6),
dtype=float)
assert_frame_equal(result, expected)
# method='bfill'
result = df.reindex(columns=range(6), method='bfill')
expected = DataFrame(data=[[11, 11, 12, 13, 13, np.nan],
[21, 21, 22, 23, 23, np.nan],
[31, 31, 32, 33, 33, np.nan]],
index=[1, 2, 4],
columns=range(6),
dtype=float)
assert_frame_equal(result, expected)
def test_reindex_axes(self):
# GH 3317, reindexing by both axes loses freq of the index
df = DataFrame(np.ones((3, 3)),
index=[datetime(2012, 1, 1),
datetime(2012, 1, 2),
datetime(2012, 1, 3)],
columns=['a', 'b', 'c'])
time_freq = date_range('2012-01-01', '2012-01-03', freq='d')
some_cols = ['a', 'b']
index_freq = df.reindex(index=time_freq).index.freq
both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq
seq_freq = df.reindex(index=time_freq).reindex(
columns=some_cols).index.freq
assert index_freq == both_freq
assert index_freq == seq_freq
def test_reindex_fill_value(self):
df = DataFrame(np.random.randn(10, 4))
# axis=0
result = df.reindex(lrange(15))
assert np.isnan(result.values[-5:]).all()
result = df.reindex(lrange(15), fill_value=0)
expected = df.reindex(lrange(15)).fillna(0)
assert_frame_equal(result, expected)
# axis=1
result = df.reindex(columns=lrange(5), fill_value=0.)
expected = df.copy()
expected[4] = 0.
assert_frame_equal(result, expected)
result = df.reindex(columns=lrange(5), fill_value=0)
expected = df.copy()
expected[4] = 0
assert_frame_equal(result, expected)
result = df.reindex(columns=lrange(5), fill_value='foo')
expected = df.copy()
expected[4] = 'foo'
assert_frame_equal(result, expected)
# reindex_axis
with tm.assert_produces_warning(FutureWarning):
result = df.reindex_axis(lrange(15), fill_value=0., axis=0)
expected = df.reindex(lrange(15)).fillna(0)
assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
result = df.reindex_axis(lrange(5), fill_value=0., axis=1)
expected = df.reindex(columns=lrange(5)).fillna(0)
assert_frame_equal(result, expected)
# other dtypes
df['foo'] = 'foo'
result = df.reindex(lrange(15), fill_value=0)
expected = df.reindex(lrange(15)).fillna(0)
assert_frame_equal(result, expected)
def test_reindex_dups(self):
# GH4746, reindex on duplicate index error messages
arr = np.random.randn(10)
df = DataFrame(arr, index=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5])
# set index is ok
result = df.copy()
result.index = list(range(len(df)))
expected = DataFrame(arr, index=list(range(len(df))))
assert_frame_equal(result, expected)
# reindex fails
pytest.raises(ValueError, df.reindex, index=list(range(len(df))))
def test_reindex_axis_style(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
expected = pd.DataFrame({"A": [1, 2, np.nan], "B": [4, 5, np.nan]},
index=[0, 1, 3])
result = df.reindex([0, 1, 3])
assert_frame_equal(result, expected)
result = df.reindex([0, 1, 3], axis=0)
assert_frame_equal(result, expected)
result = df.reindex([0, 1, 3], axis='index')
assert_frame_equal(result, expected)
def test_reindex_positional_warns(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
expected = pd.DataFrame({"A": [1., 2], 'B': [4., 5],
"C": [np.nan, np.nan]})
with tm.assert_produces_warning(FutureWarning):
result = df.reindex([0, 1], ['A', 'B', 'C'])
assert_frame_equal(result, expected)
def test_reindex_axis_style_raises(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2, 3], 'B': [4, 5, 6]})
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex([0, 1], ['A'], axis=1)
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex([0, 1], ['A'], axis='index')
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(index=[0, 1], axis='index')
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(index=[0, 1], axis='columns')
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(columns=[0, 1], axis='columns')
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(index=[0, 1], columns=[0, 1], axis='columns')
with tm.assert_raises_regex(TypeError, 'Cannot specify all'):
df.reindex([0, 1], [0], ['A'])
# Mixing styles
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(index=[0, 1], axis='index')
with tm.assert_raises_regex(TypeError, "Cannot specify both 'axis'"):
df.reindex(index=[0, 1], axis='columns')
# Duplicates
with tm.assert_raises_regex(TypeError, "multiple values"):
df.reindex([0, 1], labels=[0, 1])
def test_reindex_single_named_indexer(self):
# https://github.com/pandas-dev/pandas/issues/12392
df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]})
result = df.reindex([0, 1], columns=['A'])
expected = pd.DataFrame({"A": [1, 2]})
assert_frame_equal(result, expected)
def test_reindex_api_equivalence(self):
# https://github.com/pandas-dev/pandas/issues/12392
# equivalence of the labels/axis and index/columns API's
df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]],
index=['a', 'b', 'c'],
columns=['d', 'e', 'f'])
res1 = df.reindex(['b', 'a'])
res2 = df.reindex(index=['b', 'a'])
res3 = df.reindex(labels=['b', 'a'])
res4 = df.reindex(labels=['b', 'a'], axis=0)
res5 = df.reindex(['b', 'a'], axis=0)
for res in [res2, res3, res4, res5]:
tm.assert_frame_equal(res1, res)
res1 = df.reindex(columns=['e', 'd'])
res2 = df.reindex(['e', 'd'], axis=1)
res3 = df.reindex(labels=['e', 'd'], axis=1)
for res in [res2, res3]:
tm.assert_frame_equal(res1, res)
with tm.assert_produces_warning(FutureWarning) as m:
res1 = df.reindex(['b', 'a'], ['e', 'd'])
assert 'reindex' in str(m[0].message)
res2 = df.reindex(columns=['e', 'd'], index=['b', 'a'])
res3 = df.reindex(labels=['b', 'a'], axis=0).reindex(labels=['e', 'd'],
axis=1)
for res in [res2, res3]:
tm.assert_frame_equal(res1, res)
def test_align(self):
af, bf = self.frame.align(self.frame)
assert af._data is not self.frame._data
af, bf = self.frame.align(self.frame, copy=False)
assert af._data is self.frame._data
# axis = 0
other = self.frame.iloc[:-5, :3]
af, bf = self.frame.align(other, axis=0, fill_value=-1)
tm.assert_index_equal(bf.columns, other.columns)
# test fill value
join_idx = self.frame.index.join(other.index)
diff_a = self.frame.index.difference(join_idx)
diff_b = other.index.difference(join_idx)
diff_a_vals = af.reindex(diff_a).values
diff_b_vals = bf.reindex(diff_b).values
assert (diff_a_vals == -1).all()
af, bf = self.frame.align(other, join='right', axis=0)
tm.assert_index_equal(bf.columns, other.columns)
tm.assert_index_equal(bf.index, other.index)
tm.assert_index_equal(af.index, other.index)
# axis = 1
other = self.frame.iloc[:-5, :3].copy()
af, bf = self.frame.align(other, axis=1)
tm.assert_index_equal(bf.columns, self.frame.columns)
tm.assert_index_equal(bf.index, other.index)
# test fill value
join_idx = self.frame.index.join(other.index)
diff_a = self.frame.index.difference(join_idx)
diff_b = other.index.difference(join_idx)
diff_a_vals = af.reindex(diff_a).values
# TODO(wesm): unused?
diff_b_vals = bf.reindex(diff_b).values # noqa
assert (diff_a_vals == -1).all()
af, bf = self.frame.align(other, join='inner', axis=1)
tm.assert_index_equal(bf.columns, other.columns)
af, bf = self.frame.align(other, join='inner', axis=1, method='pad')
tm.assert_index_equal(bf.columns, other.columns)
# test other non-float types
af, bf = self.intframe.align(other, join='inner', axis=1, method='pad')
tm.assert_index_equal(bf.columns, other.columns)
af, bf = self.mixed_frame.align(self.mixed_frame,
join='inner', axis=1, method='pad')
tm.assert_index_equal(bf.columns, self.mixed_frame.columns)
af, bf = self.frame.align(other.iloc[:, 0], join='inner', axis=1,
method=None, fill_value=None)
tm.assert_index_equal(bf.index, Index([]))
af, bf = self.frame.align(other.iloc[:, 0], join='inner', axis=1,
method=None, fill_value=0)
tm.assert_index_equal(bf.index, Index([]))
# mixed floats/ints
af, bf = self.mixed_float.align(other.iloc[:, 0], join='inner', axis=1,
method=None, fill_value=0)
tm.assert_index_equal(bf.index, Index([]))
af, bf = self.mixed_int.align(other.iloc[:, 0], join='inner', axis=1,
method=None, fill_value=0)
tm.assert_index_equal(bf.index, Index([]))
# Try to align DataFrame to Series along bad axis
with pytest.raises(ValueError):
self.frame.align(af.iloc[0, :3], join='inner', axis=2)
# align dataframe to series with broadcast or not
idx = self.frame.index
s = Series(range(len(idx)), index=idx)
left, right = self.frame.align(s, axis=0)
tm.assert_index_equal(left.index, self.frame.index)
tm.assert_index_equal(right.index, self.frame.index)
assert isinstance(right, Series)
left, right = self.frame.align(s, broadcast_axis=1)
tm.assert_index_equal(left.index, self.frame.index)
expected = {}
for c in self.frame.columns:
expected[c] = s
expected = DataFrame(expected, index=self.frame.index,
columns=self.frame.columns)
tm.assert_frame_equal(right, expected)
# see gh-9558
df = DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
result = df[df['a'] == 2]
expected = DataFrame([[2, 5]], index=[1], columns=['a', 'b'])
tm.assert_frame_equal(result, expected)
result = df.where(df['a'] == 2, 0)
expected = DataFrame({'a': [0, 2, 0], 'b': [0, 5, 0]})
tm.assert_frame_equal(result, expected)
def _check_align(self, a, b, axis, fill_axis, how, method, limit=None):
aa, ab = a.align(b, axis=axis, join=how, method=method, limit=limit,
fill_axis=fill_axis)
join_index, join_columns = None, None
ea, eb = a, b
if axis is None or axis == 0:
join_index = a.index.join(b.index, how=how)
ea = ea.reindex(index=join_index)
eb = eb.reindex(index=join_index)
if axis is None or axis == 1:
join_columns = a.columns.join(b.columns, how=how)
ea = ea.reindex(columns=join_columns)
eb = eb.reindex(columns=join_columns)
ea = ea.fillna(axis=fill_axis, method=method, limit=limit)
eb = eb.fillna(axis=fill_axis, method=method, limit=limit)
assert_frame_equal(aa, ea)
assert_frame_equal(ab, eb)
def test_align_fill_method_inner(self):
for meth in ['pad', 'bfill']:
for ax in [0, 1, None]:
for fax in [0, 1]:
self._check_align_fill('inner', meth, ax, fax)
def test_align_fill_method_outer(self):
for meth in ['pad', 'bfill']:
for ax in [0, 1, None]:
for fax in [0, 1]:
self._check_align_fill('outer', meth, ax, fax)
def test_align_fill_method_left(self):
for meth in ['pad', 'bfill']:
for ax in [0, 1, None]:
for fax in [0, 1]:
self._check_align_fill('left', meth, ax, fax)
def test_align_fill_method_right(self):
for meth in ['pad', 'bfill']:
for ax in [0, 1, None]:
for fax in [0, 1]:
self._check_align_fill('right', meth, ax, fax)
def _check_align_fill(self, kind, meth, ax, fax):
left = self.frame.iloc[0:4, :10]
right = self.frame.iloc[2:, 6:]
empty = self.frame.iloc[:0, :0]
self._check_align(left, right, axis=ax, fill_axis=fax,
how=kind, method=meth)
self._check_align(left, right, axis=ax, fill_axis=fax,
how=kind, method=meth, limit=1)
# empty left
self._check_align(empty, right, axis=ax, fill_axis=fax,
how=kind, method=meth)
self._check_align(empty, right, axis=ax, fill_axis=fax,
how=kind, method=meth, limit=1)
# empty right
self._check_align(left, empty, axis=ax, fill_axis=fax,
how=kind, method=meth)
self._check_align(left, empty, axis=ax, fill_axis=fax,
how=kind, method=meth, limit=1)
# both empty
self._check_align(empty, empty, axis=ax, fill_axis=fax,
how=kind, method=meth)
self._check_align(empty, empty, axis=ax, fill_axis=fax,
how=kind, method=meth, limit=1)
def test_align_int_fill_bug(self):
# GH #910
X = np.arange(10 * 10, dtype='float64').reshape(10, 10)
Y = np.ones((10, 1), dtype=int)
df1 = DataFrame(X)
df1['0.X'] = Y.squeeze()
df2 = df1.astype(float)
result = df1 - df1.mean()
expected = df2 - df2.mean()
assert_frame_equal(result.astype('f8'), expected)
def test_align_multiindex(self):
# GH 10665
# same test cases as test_align_multiindex in test_series.py
midx = pd.MultiIndex.from_product([range(2), range(3), range(2)],
names=('a', 'b', 'c'))
idx = pd.Index(range(2), name='b')
df1 = pd.DataFrame(np.arange(12, dtype='int64'), index=midx)
df2 = pd.DataFrame(np.arange(2, dtype='int64'), index=idx)
# these must be the same results (but flipped)
res1l, res1r = df1.align(df2, join='left')
res2l, res2r = df2.align(df1, join='right')
expl = df1
assert_frame_equal(expl, res1l)
assert_frame_equal(expl, res2r)
expr = pd.DataFrame([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx)
assert_frame_equal(expr, res1r)
assert_frame_equal(expr, res2l)
res1l, res1r = df1.align(df2, join='right')
res2l, res2r = df2.align(df1, join='left')
exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)],
names=('a', 'b', 'c'))
expl = pd.DataFrame([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx)
assert_frame_equal(expl, res1l)
assert_frame_equal(expl, res2r)
expr = pd.DataFrame([0, 0, 1, 1] * 2, index=exp_idx)
assert_frame_equal(expr, res1r)
assert_frame_equal(expr, res2l)
def test_align_series_combinations(self):
df = pd.DataFrame({'a': [1, 3, 5],
'b': [1, 3, 5]}, index=list('ACE'))
s = pd.Series([1, 2, 4], index=list('ABD'), name='x')
# frame + series
res1, res2 = df.align(s, axis=0)
exp1 = pd.DataFrame({'a': [1, np.nan, 3, np.nan, 5],
'b': [1, np.nan, 3, np.nan, 5]},
index=list('ABCDE'))
exp2 = pd.Series([1, 2, np.nan, 4, np.nan],
index=list('ABCDE'), name='x')
tm.assert_frame_equal(res1, exp1)
tm.assert_series_equal(res2, exp2)
# series + frame
res1, res2 = s.align(df)
tm.assert_series_equal(res1, exp2)
tm.assert_frame_equal(res2, exp1)
def test_filter(self):
# Items
filtered = self.frame.filter(['A', 'B', 'E'])
assert len(filtered.columns) == 2
assert 'E' not in filtered
filtered = self.frame.filter(['A', 'B', 'E'], axis='columns')
assert len(filtered.columns) == 2
assert 'E' not in filtered
# Other axis
idx = self.frame.index[0:4]
filtered = self.frame.filter(idx, axis='index')
expected = self.frame.reindex(index=idx)
tm.assert_frame_equal(filtered, expected)
# like
fcopy = self.frame.copy()
fcopy['AA'] = 1
filtered = fcopy.filter(like='A')
assert len(filtered.columns) == 2
assert 'AA' in filtered
# like with ints in column names
df = DataFrame(0., index=[0, 1, 2], columns=[0, 1, '_A', '_B'])
filtered = df.filter(like='_')
assert len(filtered.columns) == 2
# regex with ints in column names
# from PR #10384
df = DataFrame(0., index=[0, 1, 2], columns=['A1', 1, 'B', 2, 'C'])
expected = DataFrame(
0., index=[0, 1, 2], columns=pd.Index([1, 2], dtype=object))
filtered = df.filter(regex='^[0-9]+$')
tm.assert_frame_equal(filtered, expected)
expected = DataFrame(0., index=[0, 1, 2], columns=[0, '0', 1, '1'])
# shouldn't remove anything
filtered = expected.filter(regex='^[0-9]+$')
tm.assert_frame_equal(filtered, expected)
# pass in None
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter()
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter(items=None)
with tm.assert_raises_regex(TypeError, 'Must pass'):
self.frame.filter(axis=1)
# test mutually exclusive arguments
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$', like='bbi')
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$', axis=1)
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], regex='e$')
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], like='bbi', axis=0)
with tm.assert_raises_regex(TypeError, 'mutually exclusive'):
self.frame.filter(items=['one', 'three'], like='bbi')
# objects
filtered = self.mixed_frame.filter(like='foo')
assert 'foo' in filtered
# unicode columns, won't ascii-encode
df = self.frame.rename(columns={'B': u('\u2202')})
filtered = df.filter(like='C')
assert 'C' in filtered
def test_filter_regex_search(self):
fcopy = self.frame.copy()
fcopy['AA'] = 1
# regex
filtered = fcopy.filter(regex='[A]+')
assert len(filtered.columns) == 2
assert 'AA' in filtered
# doesn't have to be at beginning
df = DataFrame({'aBBa': [1, 2],
'BBaBB': [1, 2],
'aCCa': [1, 2],
'aCCaBB': [1, 2]})
result = df.filter(regex='BB')
exp = df[[x for x in df.columns if 'BB' in x]]
assert_frame_equal(result, exp)
@pytest.mark.parametrize('name,expected', [
('a', DataFrame({u'a': [1, 2]})),
(u'a', DataFrame({u'a': [1, 2]})),
(u'あ', DataFrame({u'あ': [3, 4]}))
])
def test_filter_unicode(self, name, expected):
# GH13101
df = DataFrame({u'a': [1, 2], u'あ': [3, 4]})
assert_frame_equal(df.filter(like=name), expected)
assert_frame_equal(df.filter(regex=name), expected)
@pytest.mark.parametrize('name', ['a', u'a'])
def test_filter_bytestring(self, name):
# GH13101
df = DataFrame({b'a': [1, 2], b'b': [3, 4]})
expected = DataFrame({b'a': [1, 2]})
assert_frame_equal(df.filter(like=name), expected)
assert_frame_equal(df.filter(regex=name), expected)
def test_filter_corner(self):
empty = DataFrame()
result = empty.filter([])
assert_frame_equal(result, empty)
result = empty.filter(like='foo')
assert_frame_equal(result, empty)
def test_select(self):
# deprecated: gh-12410
f = lambda x: x.weekday() == 2
index = self.tsframe.index[[f(x) for x in self.tsframe.index]]
expected_weekdays = self.tsframe.reindex(index=index)
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = self.tsframe.select(f, axis=0)
assert_frame_equal(result, expected_weekdays)
result = self.frame.select(lambda x: x in ('B', 'D'), axis=1)
expected = self.frame.reindex(columns=['B', 'D'])
assert_frame_equal(result, expected, check_names=False)
# replacement
f = lambda x: x.weekday == 2
result = self.tsframe.loc(axis=0)[f(self.tsframe.index)]
assert_frame_equal(result, expected_weekdays)
crit = lambda x: x in ['B', 'D']
result = self.frame.loc(axis=1)[(self.frame.columns.map(crit))]
expected = self.frame.reindex(columns=['B', 'D'])
assert_frame_equal(result, expected, check_names=False)
# doc example
df = DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])
crit = lambda x: x in ['bar', 'baz']
with tm.assert_produces_warning(FutureWarning):
expected = df.select(crit)
result = df.loc[df.index.map(crit)]
assert_frame_equal(result, expected, check_names=False)
def test_take(self):
# homogeneous
order = [3, 1, 2, 0]
for df in [self.frame]:
result = df.take(order, axis=0)
expected = df.reindex(df.index.take(order))
assert_frame_equal(result, expected)
# axis = 1
result = df.take(order, axis=1)
expected = df.loc[:, ['D', 'B', 'C', 'A']]
assert_frame_equal(result, expected, check_names=False)
# negative indices
order = [2, 1, -1]
for df in [self.frame]:
result = df.take(order, axis=0)
expected = df.reindex(df.index.take(order))
assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
result = df.take(order, convert=True, axis=0)
assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning):
result = df.take(order, convert=False, axis=0)
assert_frame_equal(result, expected)
# axis = 1
result = df.take(order, axis=1)
expected = df.loc[:, ['C', 'B', 'D']]
assert_frame_equal(result, expected, check_names=False)
# illegal indices
pytest.raises(IndexError, df.take, [3, 1, 2, 30], axis=0)
pytest.raises(IndexError, df.take, [3, 1, 2, -31], axis=0)
pytest.raises(IndexError, df.take, [3, 1, 2, 5], axis=1)
pytest.raises(IndexError, df.take, [3, 1, 2, -5], axis=1)
# mixed-dtype
order = [4, 1, 2, 0, 3]
for df in [self.mixed_frame]:
result = df.take(order, axis=0)
expected = df.reindex(df.index.take(order))
assert_frame_equal(result, expected)