forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapply.py
454 lines (352 loc) · 13 KB
/
apply.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import abc
import inspect
from typing import TYPE_CHECKING, Any, Dict, Iterator, Tuple, Type, Union
import numpy as np
from pandas._libs import reduction as libreduction
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import (
is_dict_like,
is_extension_array_dtype,
is_list_like,
is_sequence,
)
from pandas.core.dtypes.generic import ABCMultiIndex, ABCSeries
if TYPE_CHECKING:
from pandas import DataFrame, Series, Index
ResType = Dict[int, Any]
def frame_apply(
obj: "DataFrame",
func,
axis=0,
raw: bool = False,
result_type=None,
ignore_failures: bool = False,
args=None,
kwds=None,
):
""" construct and return a row or column based frame apply object """
axis = obj._get_axis_number(axis)
if axis == 0:
klass = FrameRowApply # type: Type[FrameApply]
elif axis == 1:
klass = FrameColumnApply
return klass(
obj,
func,
raw=raw,
result_type=result_type,
ignore_failures=ignore_failures,
args=args,
kwds=kwds,
)
class FrameApply(metaclass=abc.ABCMeta):
# ---------------------------------------------------------------
# Abstract Methods
axis: int
@property
@abc.abstractmethod
def result_index(self) -> "Index":
pass
@property
@abc.abstractmethod
def result_columns(self) -> "Index":
pass
@property
@abc.abstractmethod
def series_generator(self) -> Iterator["Series"]:
pass
@abc.abstractmethod
def wrap_results_for_axis(
self, results: ResType, res_index: "Index"
) -> Union["Series", "DataFrame"]:
pass
# ---------------------------------------------------------------
def __init__(
self,
obj: "DataFrame",
func,
raw: bool,
result_type,
ignore_failures: bool,
args,
kwds,
):
self.obj = obj
self.raw = raw
self.ignore_failures = ignore_failures
self.args = args or ()
self.kwds = kwds or {}
if result_type not in [None, "reduce", "broadcast", "expand"]:
raise ValueError(
"invalid value for result_type, must be one "
"of {None, 'reduce', 'broadcast', 'expand'}"
)
self.result_type = result_type
# curry if needed
if (kwds or args) and not isinstance(func, (np.ufunc, str)):
def f(x):
return func(x, *args, **kwds)
else:
f = func
self.f = f
@property
def res_columns(self) -> "Index":
return self.result_columns
@property
def columns(self) -> "Index":
return self.obj.columns
@property
def index(self) -> "Index":
return self.obj.index
@cache_readonly
def values(self):
return self.obj.values
@cache_readonly
def dtypes(self) -> "Series":
return self.obj.dtypes
@property
def agg_axis(self) -> "Index":
return self.obj._get_agg_axis(self.axis)
def get_result(self):
""" compute the results """
# dispatch to agg
if is_list_like(self.f) or is_dict_like(self.f):
return self.obj.aggregate(self.f, axis=self.axis, *self.args, **self.kwds)
# all empty
if len(self.columns) == 0 and len(self.index) == 0:
return self.apply_empty_result()
# string dispatch
if isinstance(self.f, str):
# Support for `frame.transform('method')`
# Some methods (shift, etc.) require the axis argument, others
# don't, so inspect and insert if necessary.
func = getattr(self.obj, self.f)
sig = inspect.getfullargspec(func)
if "axis" in sig.args:
self.kwds["axis"] = self.axis
return func(*self.args, **self.kwds)
# ufunc
elif isinstance(self.f, np.ufunc):
with np.errstate(all="ignore"):
results = self.obj._data.apply("apply", func=self.f)
return self.obj._constructor(
data=results, index=self.index, columns=self.columns, copy=False
)
# broadcasting
if self.result_type == "broadcast":
return self.apply_broadcast(self.obj)
# one axis empty
elif not all(self.obj.shape):
return self.apply_empty_result()
# raw
elif self.raw and not self.obj._is_mixed_type:
return self.apply_raw()
return self.apply_standard()
def apply_empty_result(self):
"""
we have an empty result; at least 1 axis is 0
we will try to apply the function to an empty
series in order to see if this is a reduction function
"""
# we are not asked to reduce or infer reduction
# so just return a copy of the existing object
if self.result_type not in ["reduce", None]:
return self.obj.copy()
# we may need to infer
should_reduce = self.result_type == "reduce"
from pandas import Series
if not should_reduce:
try:
r = self.f(Series([]))
except Exception:
pass
else:
should_reduce = not isinstance(r, Series)
if should_reduce:
if len(self.agg_axis):
r = self.f(Series([]))
else:
r = np.nan
return self.obj._constructor_sliced(r, index=self.agg_axis)
else:
return self.obj.copy()
def apply_raw(self):
""" apply to the values as a numpy array """
try:
result = libreduction.compute_reduction(self.values, self.f, axis=self.axis)
except ValueError as err:
if "Function does not reduce" not in str(err):
# catch only ValueError raised intentionally in libreduction
raise
# We expect np.apply_along_axis to give a two-dimensional result, or
# also raise.
result = np.apply_along_axis(self.f, self.axis, self.values)
# TODO: mixed type case
if result.ndim == 2:
return self.obj._constructor(result, index=self.index, columns=self.columns)
else:
return self.obj._constructor_sliced(result, index=self.agg_axis)
def apply_broadcast(self, target: "DataFrame") -> "DataFrame":
result_values = np.empty_like(target.values)
# axis which we want to compare compliance
result_compare = target.shape[0]
for i, col in enumerate(target.columns):
res = self.f(target[col])
ares = np.asarray(res).ndim
# must be a scalar or 1d
if ares > 1:
raise ValueError("too many dims to broadcast")
elif ares == 1:
# must match return dim
if result_compare != len(res):
raise ValueError("cannot broadcast result")
result_values[:, i] = res
# we *always* preserve the original index / columns
result = self.obj._constructor(
result_values, index=target.index, columns=target.columns
)
return result
def apply_standard(self):
# try to reduce first (by default)
# this only matters if the reduction in values is of different dtype
# e.g. if we want to apply to a SparseFrame, then can't directly reduce
# we cannot reduce using non-numpy dtypes,
# as demonstrated in gh-12244
if (
self.result_type in ["reduce", None]
and not self.dtypes.apply(is_extension_array_dtype).any()
# Disallow complex_internals since libreduction shortcut
# cannot handle MultiIndex
and not isinstance(self.agg_axis, ABCMultiIndex)
):
values = self.values
index = self.obj._get_axis(self.axis)
labels = self.agg_axis
empty_arr = np.empty(len(index), dtype=values.dtype)
# Preserve subclass for e.g. test_subclassed_apply
dummy = self.obj._constructor_sliced(
empty_arr, index=index, dtype=values.dtype
)
try:
result = libreduction.compute_reduction(
values, self.f, axis=self.axis, dummy=dummy, labels=labels
)
except ValueError as err:
if "Function does not reduce" not in str(err):
# catch only ValueError raised intentionally in libreduction
raise
except TypeError:
# e.g. test_apply_ignore_failures we just ignore
if not self.ignore_failures:
raise
except ZeroDivisionError:
# reached via numexpr; fall back to python implementation
pass
else:
return self.obj._constructor_sliced(result, index=labels)
# compute the result using the series generator
results, res_index = self.apply_series_generator()
# wrap results
return self.wrap_results(results, res_index)
def apply_series_generator(self) -> Tuple[ResType, "Index"]:
series_gen = self.series_generator
res_index = self.result_index
i = None
keys = []
results = {}
if self.ignore_failures:
successes = []
for i, v in enumerate(series_gen):
try:
results[i] = self.f(v)
except Exception:
pass
else:
keys.append(v.name)
successes.append(i)
# so will work with MultiIndex
if len(successes) < len(res_index):
res_index = res_index.take(successes)
else:
for i, v in enumerate(series_gen):
results[i] = self.f(v)
keys.append(v.name)
return results, res_index
def wrap_results(
self, results: ResType, res_index: "Index"
) -> Union["Series", "DataFrame"]:
# see if we can infer the results
if len(results) > 0 and 0 in results and is_sequence(results[0]):
return self.wrap_results_for_axis(results, res_index)
# dict of scalars
result = self.obj._constructor_sliced(results)
result.index = res_index
return result
class FrameRowApply(FrameApply):
axis = 0
def apply_broadcast(self, target: "DataFrame") -> "DataFrame":
return super().apply_broadcast(target)
@property
def series_generator(self):
return (self.obj._ixs(i, axis=1) for i in range(len(self.columns)))
@property
def result_index(self) -> "Index":
return self.columns
@property
def result_columns(self) -> "Index":
return self.index
def wrap_results_for_axis(
self, results: ResType, res_index: "Index"
) -> "DataFrame":
""" return the results for the rows """
result = self.obj._constructor(data=results)
if not isinstance(results[0], ABCSeries):
if len(result.index) == len(self.res_columns):
result.index = self.res_columns
if len(result.columns) == len(res_index):
result.columns = res_index
return result
class FrameColumnApply(FrameApply):
axis = 1
def apply_broadcast(self, target: "DataFrame") -> "DataFrame":
result = super().apply_broadcast(target.T)
return result.T
@property
def series_generator(self):
constructor = self.obj._constructor_sliced
return (
constructor(arr, index=self.columns, name=name)
for i, (arr, name) in enumerate(zip(self.values, self.index))
)
@property
def result_index(self) -> "Index":
return self.index
@property
def result_columns(self) -> "Index":
return self.columns
def wrap_results_for_axis(
self, results: ResType, res_index: "Index"
) -> Union["Series", "DataFrame"]:
""" return the results for the columns """
result: Union["Series", "DataFrame"]
# we have requested to expand
if self.result_type == "expand":
result = self.infer_to_same_shape(results, res_index)
# we have a non-series and don't want inference
elif not isinstance(results[0], ABCSeries):
from pandas import Series
result = Series(results)
result.index = res_index
# we may want to infer results
else:
result = self.infer_to_same_shape(results, res_index)
return result
def infer_to_same_shape(self, results: ResType, res_index: "Index") -> "DataFrame":
""" infer the results to the same shape as the input object """
result = self.obj._constructor(data=results)
result = result.T
# set the index
result.index = res_index
# infer dtypes
result = result.infer_objects()
return result