forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinternals.pyx
457 lines (347 loc) · 11.6 KB
/
internals.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from collections import defaultdict
import cython
from cython import Py_ssize_t
from cpython.slice cimport PySlice_GetIndicesEx
cdef extern from "Python.h":
Py_ssize_t PY_SSIZE_T_MAX
import numpy as np
cimport numpy as cnp
from numpy cimport (
NPY_INTP,
int64_t,
intp_t,
ndarray,
)
cnp.import_array()
from pandas._libs.algos import ensure_int64
from pandas._libs.util cimport is_integer_object
@cython.final
@cython.freelist(32)
cdef class BlockPlacement:
# __slots__ = '_as_slice', '_as_array', '_len'
cdef:
slice _as_slice
ndarray _as_array # Note: this still allows `None`; will be intp_t
bint _has_slice, _has_array, _is_known_slice_like
def __cinit__(self, val):
cdef:
slice slc
self._as_slice = None
self._as_array = None
self._has_slice = False
self._has_array = False
if is_integer_object(val):
slc = slice(val, val + 1, 1)
self._as_slice = slc
self._has_slice = True
elif isinstance(val, slice):
slc = slice_canonize(val)
if slc.start != slc.stop:
self._as_slice = slc
self._has_slice = True
else:
arr = np.empty(0, dtype=np.intp)
self._as_array = arr
self._has_array = True
else:
# Cython memoryview interface requires ndarray to be writeable.
arr = np.require(val, dtype=np.intp, requirements='W')
assert arr.ndim == 1, arr.shape
self._as_array = arr
self._has_array = True
def __str__(self) -> str:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
v = self._as_slice
else:
v = self._as_array
return f"{type(self).__name__}({v})"
def __repr__(self) -> str:
return str(self)
def __len__(self) -> int:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return slice_len(s)
else:
return len(self._as_array)
def __iter__(self):
cdef:
slice s = self._ensure_has_slice()
Py_ssize_t start, stop, step, _
if s is not None:
start, stop, step, _ = slice_get_indices_ex(s)
return iter(range(start, stop, step))
else:
return iter(self._as_array)
@property
def as_slice(self) -> slice:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return s
else:
raise TypeError("Not slice-like")
@property
def indexer(self):
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return s
else:
return self._as_array
@property
def as_array(self) -> np.ndarray:
cdef:
Py_ssize_t start, stop, end, _
if not self._has_array:
start, stop, step, _ = slice_get_indices_ex(self._as_slice)
# NOTE: this is the C-optimized equivalent of
# `np.arange(start, stop, step, dtype=np.intp)`
self._as_array = cnp.PyArray_Arange(start, stop, step, NPY_INTP)
self._has_array = True
return self._as_array
@property
def is_slice_like(self) -> bool:
cdef:
slice s = self._ensure_has_slice()
return s is not None
def __getitem__(self, loc):
cdef:
slice s = self._ensure_has_slice()
if s is not None:
val = slice_getitem(s, loc)
else:
val = self._as_array[loc]
if not isinstance(val, slice) and val.ndim == 0:
return val
return BlockPlacement(val)
def delete(self, loc) -> BlockPlacement:
return BlockPlacement(np.delete(self.as_array, loc, axis=0))
def append(self, others) -> BlockPlacement:
if not len(others):
return self
return BlockPlacement(
np.concatenate([self.as_array] + [o.as_array for o in others])
)
cdef BlockPlacement iadd(self, other):
cdef:
slice s = self._ensure_has_slice()
Py_ssize_t other_int, start, stop, step, l
if is_integer_object(other) and s is not None:
other_int = <Py_ssize_t>other
if other_int == 0:
# BlockPlacement is treated as immutable
return self
start, stop, step, l = slice_get_indices_ex(s)
start += other_int
stop += other_int
if (step > 0 and start < 0) or (step < 0 and stop < step):
raise ValueError("iadd causes length change")
if stop < 0:
val = slice(start, None, step)
else:
val = slice(start, stop, step)
return BlockPlacement(val)
else:
newarr = self.as_array + other
if (newarr < 0).any():
raise ValueError("iadd causes length change")
val = newarr
return BlockPlacement(val)
def add(self, other) -> BlockPlacement:
# We can get here with int or ndarray
return self.iadd(other)
cdef slice _ensure_has_slice(self):
if not self._has_slice:
self._as_slice = indexer_as_slice(self._as_array)
self._has_slice = True
return self._as_slice
cdef slice slice_canonize(slice s):
"""
Convert slice to canonical bounded form.
"""
cdef:
Py_ssize_t start = 0, stop = 0, step = 1
if s.step is None:
step = 1
else:
step = <Py_ssize_t>s.step
if step == 0:
raise ValueError("slice step cannot be zero")
if step > 0:
if s.stop is None:
raise ValueError("unbounded slice")
stop = <Py_ssize_t>s.stop
if s.start is None:
start = 0
else:
start = <Py_ssize_t>s.start
if start > stop:
start = stop
elif step < 0:
if s.start is None:
raise ValueError("unbounded slice")
start = <Py_ssize_t>s.start
if s.stop is None:
stop = -1
else:
stop = <Py_ssize_t>s.stop
if stop > start:
stop = start
if start < 0 or (stop < 0 and s.stop is not None and step > 0):
raise ValueError("unbounded slice")
if stop < 0:
return slice(start, None, step)
else:
return slice(start, stop, step)
cpdef Py_ssize_t slice_len(slice slc, Py_ssize_t objlen=PY_SSIZE_T_MAX) except -1:
"""
Get length of a bounded slice.
The slice must not have any "open" bounds that would create dependency on
container size, i.e.:
- if ``s.step is None or s.step > 0``, ``s.stop`` is not ``None``
- if ``s.step < 0``, ``s.start`` is not ``None``
Otherwise, the result is unreliable.
"""
cdef:
Py_ssize_t start, stop, step, length
if slc is None:
raise TypeError("slc must be slice")
PySlice_GetIndicesEx(slc, objlen, &start, &stop, &step, &length)
return length
cdef slice_get_indices_ex(slice slc, Py_ssize_t objlen=PY_SSIZE_T_MAX):
"""
Get (start, stop, step, length) tuple for a slice.
If `objlen` is not specified, slice must be bounded, otherwise the result
will be wrong.
"""
cdef:
Py_ssize_t start, stop, step, length
if slc is None:
raise TypeError("slc should be a slice")
PySlice_GetIndicesEx(slc, objlen, &start, &stop, &step, &length)
return start, stop, step, length
cdef slice_getitem(slice slc, ind):
cdef:
Py_ssize_t s_start, s_stop, s_step, s_len
Py_ssize_t ind_start, ind_stop, ind_step, ind_len
s_start, s_stop, s_step, s_len = slice_get_indices_ex(slc)
if isinstance(ind, slice):
ind_start, ind_stop, ind_step, ind_len = slice_get_indices_ex(ind, s_len)
if ind_step > 0 and ind_len == s_len:
# short-cut for no-op slice
if ind_len == s_len:
return slc
if ind_step < 0:
s_start = s_stop - s_step
ind_step = -ind_step
s_step *= ind_step
s_stop = s_start + ind_stop * s_step
s_start = s_start + ind_start * s_step
if s_step < 0 and s_stop < 0:
return slice(s_start, None, s_step)
else:
return slice(s_start, s_stop, s_step)
else:
# NOTE:
# this is the C-optimized equivalent of
# `np.arange(s_start, s_stop, s_step, dtype=np.intp)[ind]`
return cnp.PyArray_Arange(s_start, s_stop, s_step, NPY_INTP)[ind]
@cython.boundscheck(False)
@cython.wraparound(False)
cdef slice indexer_as_slice(intp_t[:] vals):
cdef:
Py_ssize_t i, n, start, stop
int64_t d
if vals is None:
raise TypeError("vals must be ndarray")
n = vals.shape[0]
if n == 0 or vals[0] < 0:
return None
if n == 1:
return slice(vals[0], vals[0] + 1, 1)
if vals[1] < 0:
return None
# n > 2
d = vals[1] - vals[0]
if d == 0:
return None
for i in range(2, n):
if vals[i] < 0 or vals[i] - vals[i - 1] != d:
return None
start = vals[0]
stop = start + n * d
if stop < 0 and d < 0:
return slice(start, None, d)
else:
return slice(start, stop, d)
@cython.boundscheck(False)
@cython.wraparound(False)
def get_blkno_indexers(int64_t[:] blknos, bint group=True):
"""
Enumerate contiguous runs of integers in ndarray.
Iterate over elements of `blknos` yielding ``(blkno, slice(start, stop))``
pairs for each contiguous run found.
If `group` is True and there is more than one run for a certain blkno,
``(blkno, array)`` with an array containing positions of all elements equal
to blkno.
Returns
-------
iter : iterator of (int, slice or array)
"""
# There's blkno in this function's name because it's used in block &
# blockno handling.
cdef:
int64_t cur_blkno
Py_ssize_t i, start, stop, n, diff, tot_len
object blkno
object group_dict = defaultdict(list)
n = blknos.shape[0]
result = list()
start = 0
cur_blkno = blknos[start]
if n == 0:
pass
elif group is False:
for i in range(1, n):
if blknos[i] != cur_blkno:
result.append((cur_blkno, slice(start, i)))
start = i
cur_blkno = blknos[i]
result.append((cur_blkno, slice(start, n)))
else:
for i in range(1, n):
if blknos[i] != cur_blkno:
group_dict[cur_blkno].append((start, i))
start = i
cur_blkno = blknos[i]
group_dict[cur_blkno].append((start, n))
for blkno, slices in group_dict.items():
if len(slices) == 1:
result.append((blkno, slice(slices[0][0], slices[0][1])))
else:
tot_len = sum(stop - start for start, stop in slices)
arr = np.empty(tot_len, dtype=np.int64)
i = 0
for start, stop in slices:
for diff in range(start, stop):
arr[i] = diff
i += 1
result.append((blkno, arr))
return result
def get_blkno_placements(blknos, group: bool = True):
"""
Parameters
----------
blknos : np.ndarray[int64]
group : bool, default True
Returns
-------
iterator
yield (blkno, BlockPlacement)
"""
blknos = ensure_int64(blknos)
for blkno, indexer in get_blkno_indexers(blknos, group):
yield blkno, BlockPlacement(indexer)