Skip to content

Latest commit

 

History

History
807 lines (565 loc) · 23.9 KB

categorical.rst

File metadata and controls

807 lines (565 loc) · 23.9 KB
.. currentmodule:: pandas

.. ipython:: python
   :suppress:

   import numpy as np
   import random
   import os
   np.random.seed(123456)
   from pandas import options
   from pandas import *
   import pandas as pd
   np.set_printoptions(precision=4, suppress=True)
   options.display.mpl_style='default'
   options.display.max_rows=15


Categorical Data

.. versionadded:: 0.15

Note

While there was in pandas.Categorical in earlier versions, the ability to use categorical data in Series and DataFrame is new.

This is a introduction to pandas categorical data type, including a short comparison with R's factor.

Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. 'strongly agree' vs 'agree' or 'first observation' vs. 'second observation'), but numerical operations (additions, divisions, ...) are not possible.

All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.

The categorical data type is useful in the following cases:

  • A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see :ref:`here <categorical.memory>`.
  • The lexical order of a variable is not the same as the logical order ("one", "two", "three"). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order.
  • As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

See also the :ref:`API docs on categoricals<api.categorical>`.

Object Creation

Categorical Series or columns in a DataFrame can be created in several ways:

By specifying dtype="category" when constructing a Series:

.. ipython:: python

    s = Series(["a","b","c","a"], dtype="category")
    s

By converting an existing Series or column to a category dtype:

.. ipython:: python

    df = DataFrame({"A":["a","b","c","a"]})
    df["B"] = df["A"].astype('category')
    df

By using some special functions:

.. ipython:: python

    df = DataFrame({'value': np.random.randint(0, 100, 20)})
    labels = [ "{0} - {1}".format(i, i + 9) for i in range(0, 100, 10) ]

    df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
    df.head(10)

See :ref:`documentation <reshaping.tile.cut>` for :func:`~pandas.cut`.

By passing a :class:`pandas.Categorical` object to a Series or assigning it to a DataFrame. This is the only possibility to specify differently ordered categories (or no order at all) at creation time and the only reason to use :class:`pandas.Categorical` directly:

.. ipython:: python

    raw_cat = Categorical(["a","b","c","a"], categories=["b","c","d"],
                             ordered=False)
    s = Series(raw_cat)
    s
    df = DataFrame({"A":["a","b","c","a"]})
    df["B"] = raw_cat
    df

Categorical data has a specific category :ref:`dtype <basics.dtypes>`:

.. ipython:: python

    df.dtypes

Note

In contrast to R's factor function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.

Note

In contrast to R's factor function, there is currently no way to assign/change labels at creation time. Use categories to change the categories after creation time.

To get back to the original Series or numpy array, use Series.astype(original_dtype) or np.asarray(categorical):

.. ipython:: python

    s = Series(["a","b","c","a"])
    s
    s2 = s.astype('category')
    s2
    s3 = s2.astype('string')
    s3
    np.asarray(s2)

If you have already codes and categories, you can use the :func:`~pandas.Categorical.from_codes` constructor to save the factorize step during normal constructor mode:

.. ipython:: python

    splitter = np.random.choice([0,1], 5, p=[0.5,0.5])
    s = Series(Categorical.from_codes(splitter, categories=["train", "test"]))

Description

Using .describe() on categorical data will produce similar output to a Series or DataFrame of type string.

.. ipython:: python

    cat = Categorical(["a","c","c",np.nan], categories=["b","a","c",np.nan] )
    df = DataFrame({"cat":cat, "s":["a","c","c",np.nan]})
    df.describe()
    df["cat"].describe()

Working with categories

Categorical data has a categories and a ordered property, which list their possible values and whether the ordering matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don't manually specify categories and ordering, they are inferred from the passed in values.

.. ipython:: python

    s = Series(["a","b","c","a"], dtype="category")
    s.cat.categories
    s.cat.ordered

It's also possible to pass in the categories in a specific order:

.. ipython:: python

    s = Series(Categorical(["a","b","c","a"], categories=["c","b","a"]))
    s.cat.categories
    s.cat.ordered

Note

New categorical data is automatically ordered if the passed in values are sortable or a categories argument is supplied. This is a difference to R's factors, which are unordered unless explicitly told to be ordered (ordered=TRUE). You can of course overwrite that by passing in an explicit ordered=False.

Renaming categories

Renaming categories is done by assigning new values to the Series.cat.categories property or by using the :func:`Categorical.rename_categories` method:

.. ipython:: python

    s = Series(["a","b","c","a"], dtype="category")
    s
    s.cat.categories = ["Group %s" % g for g in s.cat.categories]
    s
    s.cat.rename_categories([1,2,3])

Note

In contrast to R's factor, categorical data can have categories of other types than string.

Note

Be aware that assigning new categories is an inplace operations, while most other operation under Series.cat per default return a new Series of dtype category.

Categories must be unique or a ValueError is raised:

.. ipython:: python

    try:
        s.cat.categories = [1,1,1]
    except ValueError as e:
        print("ValueError: " + str(e))

Appending new categories

Appending categories can be done by using the :func:`Categorical.add_categories` method:

.. ipython:: python

    s = s.cat.add_categories([4])
    s.cat.categories
    s

Removing categories

Removing categories can be done by using the :func:`Categorical.remove_categories` method. Values which are removed are replaced by np.nan.:

.. ipython:: python

    s = s.cat.remove_categories([4])
    s

Renaming unused categories

Removing unused categories can also be done:

.. ipython:: python

    s = Series(Categorical(["a","b","a"], categories=["a","b","c","d"]))
    s
    s.cat.remove_unused_categories()

Setting categories

If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use :func:`Categorical.set_categories`.

.. ipython:: python

    s = Series(["one","two","four", "-"], dtype="category")
    s
    s = s.cat.set_categories(["one","two","three","four"])
    s

Note

Be aware that :func:`Categorical.set_categories` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpys S1 dtype and python strings). This can result in surprising behaviour!

Ordered or not...

If categorical data is ordered (s.cat.ordered == True), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, a TypeError is raised.

.. ipython:: python

    s = Series(Categorical(["a","b","c","a"], ordered=False))
    try:
        s.sort()
    except TypeError as e:
        print("TypeError: " + str(e))
    s = Series(["a","b","c","a"], dtype="category") # ordered per default!
    s.sort()
    s
    s.min(), s.max()

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:

.. ipython:: python

    s = Series([1,2,3,1], dtype="category")
    s.cat.categories = [2,3,1]
    s
    s.sort()
    s
    s.min(), s.max()

Reordering the categories is possible via the :func:`Categorical.reorder_categories` and the :func:`Categorical.set_categories` methods. For :func:`Categorical.reorder_categories`, all old categories must be included in the new categories and no new categories are allowed.

.. ipython:: python

    s = Series([1,2,3,1], dtype="category")
    s = s.cat.reorder_categories([2,3,1])
    s
    s.sort()
    s
    s.min(), s.max()

Note

Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the Series, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the Series are changed.

Note

If the Categorical is not ordered, Series.min() and Series.max() will raise TypeError. Numeric operations like +, -, *, / and operations based on them (e.g.``Series.median()``, which would need to compute the mean between two values if the length of an array is even) do not work and raise a TypeError.

Comparisons

Comparing Categoricals with other objects is possible in two cases:

  • comparing a categorical Series to another categorical Series, when categories and ordered is the same or
  • comparing a categorical Series to a scalar.

All other comparisons will raise a TypeError.

.. ipython:: python

    cat = Series(Categorical([1,2,3], categories=[3,2,1]))
    cat_base = Series(Categorical([2,2,2], categories=[3,2,1]))
    cat_base2 = Series(Categorical([2,2,2]))

    cat
    cat_base
    cat_base2

Comparing to a categorical with the same categories and ordering or to a scalar works:

.. ipython:: python

    cat > cat_base
    cat > 2

This doesn't work because the categories are not the same:

.. ipython:: python

    try:
        cat > cat_base2
    except TypeError as e:
         print("TypeError: " + str(e))

Note

Comparisons with Series, np.array or a Categorical with different categories or ordering will raise an TypeError because custom categories ordering could be interpreted in two ways: one with taking in account the ordering and one without. If you want to compare a categorical series with such a type, you need to be explicit and convert the categorical data back to the original values:

.. ipython:: python

    base = np.array([1,2,3])

    try:
        cat > base
    except TypeError as e:
         print("TypeError: " + str(e))

    np.asarray(cat) > base

Operations

Apart from Series.min(), Series.max() and Series.mode(), the following operations are possible with categorical data:

Series methods like Series.value_counts() will use all categories, even if some categories are not present in the data:

.. ipython:: python

    s = Series(Categorical(["a","b","c","c"], categories=["c","a","b","d"]))
    s.value_counts()

Groupby will also show "unused" categories:

.. ipython:: python

    cats = Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c","d"])
    df = DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]})
    df.groupby("cats").mean()

    cats2 = Categorical(["a","a","b","b"], categories=["a","b","c"])
    df2 = DataFrame({"cats":cats2,"B":["c","d","c","d"], "values":[1,2,3,4]})
    df2.groupby(["cats","B"]).mean()


Pivot tables:

.. ipython:: python

    raw_cat = Categorical(["a","a","b","b"], categories=["a","b","c"])
    df = DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})
    pd.pivot_table(df, values='values', index=['A', 'B'])

Data munging

The optimized pandas data access methods .loc, .iloc, .ix .at, and .iat, work as normal, the only difference is the return type (for getting) and that only values already in categories can be assigned.

Getting

If the slicing operation returns either a DataFrame or a column of type Series, the category dtype is preserved.

.. ipython:: python

    idx = Index(["h","i","j","k","l","m","n",])
    cats = Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)
    values= [1,2,2,2,3,4,5]
    df = DataFrame({"cats":cats,"values":values}, index=idx)
    df.iloc[2:4,:]
    df.iloc[2:4,:].dtypes
    df.loc["h":"j","cats"]
    df.ix["h":"j",0:1]
    df[df["cats"] == "b"]

An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype object:

.. ipython:: python

    # get the complete "h" row as a Series
    df.loc["h", :]

Returning a single item from categorical data will also return the value, not a categorical of length "1".

.. ipython:: python

    df.iat[0,0]
    df["cats"].cat.categories = ["x","y","z"]
    df.at["h","cats"] # returns a string

Note

This is a difference to R's factor function, where factor(c(1,2,3))[1] returns a single value factor.

To get a single value Series of type category pass in a list with a single value:

.. ipython:: python

    df.loc[["h"],"cats"]

Setting

Setting values in a categorical column (or Series) works as long as the value is included in the categories:

.. ipython:: python

    idx = Index(["h","i","j","k","l","m","n"])
    cats = Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])
    values = [1,1,1,1,1,1,1]
    df = DataFrame({"cats":cats,"values":values}, index=idx)

    df.iloc[2:4,:] = [["b",2],["b",2]]
    df
    try:
        df.iloc[2:4,:] = [["c",3],["c",3]]
    except ValueError as e:
        print("ValueError: " + str(e))

Setting values by assigning categorical data will also check that the categories match:

.. ipython:: python

    df.loc["j":"k","cats"] = Categorical(["a","a"], categories=["a","b"])
    df
    try:
        df.loc["j":"k","cats"] = Categorical(["b","b"], categories=["a","b","c"])
    except ValueError as e:
        print("ValueError: " + str(e))

Assigning a Categorical to parts of a column of other types will use the values:

.. ipython:: python

    df = DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]})
    df.loc[1:2,"a"] = Categorical(["b","b"], categories=["a","b"])
    df.loc[2:3,"b"] = Categorical(["b","b"], categories=["a","b"])
    df
    df.dtypes


Merging

You can concat two DataFrames containing categorical data together, but the categories of these categoricals need to be the same:

.. ipython:: python

    cat = Series(["a","b"], dtype="category")
    vals = [1,2]
    df = DataFrame({"cats":cat, "vals":vals})
    res = pd.concat([df,df])
    res
    res.dtypes

In this case the categories are not the same and so an error is raised:

.. ipython:: python

    df_different = df.copy()
    df_different["cats"].cat.categories = ["c","d"]
    try:
        pd.concat([df,df_different])
    except ValueError as e:
        print("ValueError: " + str(e))

The same applies to df.append(df_different).

Getting Data In/Out

Writing data (Series, Frames) to a HDF store that contains a category dtype will currently raise NotImplementedError.

Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the right categories and categories ordering.

.. ipython:: python
    :suppress:

    from pandas.compat import StringIO

.. ipython:: python

    s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'd']))
    # rename the categories
    s.cat.categories = ["very good", "good", "bad"]
    # reorder the categories and add missing categories
    s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    df = DataFrame({"cats":s, "vals":[1,2,3,4,5,6]})
    csv = StringIO()
    df.to_csv(csv)
    df2 = pd.read_csv(StringIO(csv.getvalue()))
    df2.dtypes
    df2["cats"]
    # Redo the category
    df2["cats"] = df2["cats"].astype("category")
    df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"],
                                   inplace=True)
    df2.dtypes
    df2["cats"]


Missing Data

pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the :ref:`Missing Data section <missing_data>`

There are two ways a np.nan can be represented in categorical data: either the value is not available ("missing value") or np.nan is a valid category.

.. ipython:: python

    s = Series(["a","b",np.nan,"a"], dtype="category")
    # only two categories
    s
    s2 = Series(["a","b","c","a"], dtype="category")
    s2.cat.categories = [1,2,np.nan]
    # three categories, np.nan included
    s2

Note

As integer Series can't include NaN, the categories were converted to object.

Note

Missing value methods like isnull and fillna will take both missing values as well as np.nan categories into account:

.. ipython:: python

    c = Series(["a","b",np.nan], dtype="category")
    c.cat.set_categories(["a","b",np.nan], inplace=True)
    # will be inserted as a NA category:
    c[0] = np.nan
    s = Series(c)
    s
    pd.isnull(s)
    s.fillna("a")

Differences to R's factor

The following differences to R's factor functions can be observed:

  • R's levels are named categories
  • R's levels are always of type string, while categories in pandas can be of any dtype.
  • New categorical data is automatically ordered if the passed in values are sortable or a categories argument is supplied. This is a difference to R's factors, which are unordered unless explicitly told to be ordered (ordered=TRUE).
  • It's not possible to specify labels at creation time. Use s.cat.rename_categories(new_labels) afterwards.
  • In contrast to R's factor function, using categorical data as the sole input to create a new categorical series will not remove unused categories but create a new categorical series which is equal to the passed in one!

Gotchas

Memory Usage

The memory usage of a Categorical is proportional to the number of categories times the length of the data. In contrast, an object dtype is a constant times the length of the data.

.. ipython:: python

   s = Series(['foo','bar']*1000)

   # object dtype
   s.nbytes

   # category dtype
   s.astype('category').nbytes

Note

If the number of categories approaches the length of the data, the Categorical will use nearly (or more) memory than an equivalent object dtype representation.

.. ipython:: python

   s = Series(['foo%04d' % i for i in range(2000)])

   # object dtype
   s.nbytes

   # category dtype
   s.astype('category').nbytes

Old style constructor usage

In earlier versions than pandas 0.15, a Categorical could be constructed by passing in precomputed codes (called then labels) instead of values with categories. The codes were interpreted as pointers to the categories with -1 as NaN. This type of constructor useage is replaced by the special constructor :func:`Categorical.from_codes`.

Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the current pandas version, resulting in subtle bugs:

>>> cat = Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
array([2, 3], dtype=int64)
>>> # new version
>>> cat.get_values()
array([1, 2], dtype=int64)

Warning

If you used Categoricals with older versions of pandas, please audit your code before upgrading and change your code to use the :func:`~pandas.Categorical.from_codes` constructor.

Categorical is not a numpy array

Currently, categorical data and the underlying Categorical is implemented as a python object and not as a low-level numpy array dtype. This leads to some problems.

numpy itself doesn't know about the new dtype:

.. ipython:: python

    try:
        np.dtype("category")
    except TypeError as e:
        print("TypeError: " + str(e))

    dtype = Categorical(["a"]).dtype
    try:
        np.dtype(dtype)
    except TypeError as e:
         print("TypeError: " + str(e))

Dtype comparisons work:

.. ipython:: python

    dtype == np.str_
    np.str_ == dtype

Using numpy functions on a Series of type category should not work as Categoricals are not numeric data (even in the case that .categories is numeric).

.. ipython:: python

    s = Series(Categorical([1,2,3,4]))
    try:
        np.sum(s)
        #same with np.log(s),..
    except TypeError as e:
         print("TypeError: " + str(e))

Note

If such a function works, please file a bug at https://github.com/pydata/pandas!

dtype in apply

Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a Series of object dtype (same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object.

.. ipython:: python

    df = DataFrame({"a":[1,2,3,4],
                    "b":["a","b","c","d"],
                    "cats":Categorical([1,2,3,2])})
    df.apply(lambda row: type(row["cats"]), axis=1)
    df.apply(lambda col: col.dtype, axis=0)

No Categorical Index

There is currently no index of type category, so setting the index to categorical column will convert the categorical data to a "normal" dtype first and therefore remove any custom ordering of the categories:

.. ipython:: python

    cats = Categorical([1,2,3,4], categories=[4,2,3,1])
    strings = ["a","b","c","d"]
    values = [4,2,3,1]
    df = DataFrame({"strings":strings, "values":values}, index=cats)
    df.index
    # This should sort by categories but does not as there is no CategoricalIndex!
    df.sort_index()

Note

This could change if a CategoricalIndex is implemented (see pandas-dev#7629)

Side Effects

Constructing a Series from a Categorical will not copy the input Categorical. This means that changes to the Series will in most cases change the original Categorical:

.. ipython:: python

    cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])
    s = Series(cat, name="cat")
    cat
    s.iloc[0:2] = 10
    cat
    df = DataFrame(s)
    df["cat"].cat.categories = [1,2,3,4,5]
    cat

Use copy=True to prevent such a behaviour or simply don't reuse Categoricals:

.. ipython:: python

    cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])
    s = Series(cat, name="cat", copy=True)
    cat
    s.iloc[0:2] = 10
    cat

Note

This also happens in some cases when you supply a numpy array instead of a Categorical: using an int array (e.g. np.array([1,2,3,4])) will exhibit the same behaviour, while using a string array (e.g. np.array(["a","b","c","a"])) will not.