@@ -162,40 +162,40 @@ def _json_normalize(
162
162
Examples
163
163
--------
164
164
>>> data = [{'id': 1, 'name': {'first': 'Coleen', 'last': 'Volk'}},
165
- ... {'name': {'given': 'Mose ', 'family': 'Regner'}},
165
+ ... {'name': {'given': 'Mark ', 'family': 'Regner'}},
166
166
... {'id': 2, 'name': 'Faye Raker'}]
167
167
>>> pd.json_normalize(data)
168
168
id name.first name.last name.given name.family name
169
169
0 1.0 Coleen Volk NaN NaN NaN
170
- 1 NaN NaN NaN Mose Regner NaN
170
+ 1 NaN NaN NaN Mark Regner NaN
171
171
2 2.0 NaN NaN NaN NaN Faye Raker
172
172
173
173
>>> data = [{'id': 1,
174
174
... 'name': "Cole Volk",
175
175
... 'fitness': {'height': 130, 'weight': 60}},
176
- ... {'name': "Mose Reg",
176
+ ... {'name': "Mark Reg",
177
177
... 'fitness': {'height': 130, 'weight': 60}},
178
178
... {'id': 2, 'name': 'Faye Raker',
179
179
... 'fitness': {'height': 130, 'weight': 60}}]
180
180
>>> pd.json_normalize(data, max_level=0)
181
181
id name fitness
182
182
0 1.0 Cole Volk {'height': 130, 'weight': 60}
183
- 1 NaN Mose Reg {'height': 130, 'weight': 60}
183
+ 1 NaN Mark Reg {'height': 130, 'weight': 60}
184
184
2 2.0 Faye Raker {'height': 130, 'weight': 60}
185
185
186
186
Normalizes nested data up to level 1.
187
187
188
188
>>> data = [{'id': 1,
189
189
... 'name': "Cole Volk",
190
190
... 'fitness': {'height': 130, 'weight': 60}},
191
- ... {'name': "Mose Reg",
191
+ ... {'name': "Mark Reg",
192
192
... 'fitness': {'height': 130, 'weight': 60}},
193
193
... {'id': 2, 'name': 'Faye Raker',
194
194
... 'fitness': {'height': 130, 'weight': 60}}]
195
195
>>> pd.json_normalize(data, max_level=1)
196
196
id name fitness.height fitness.weight
197
197
0 1.0 Cole Volk 130 60
198
- 1 NaN Mose Reg 130 60
198
+ 1 NaN Mark Reg 130 60
199
199
2 2.0 Faye Raker 130 60
200
200
201
201
>>> data = [{'state': 'Florida',
0 commit comments