-
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathvision_transformer_packed.py
873 lines (763 loc) · 32.7 KB
/
vision_transformer_packed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
""" Packed Sequence Vision Transformer (ViT) in PyTorch
Base on ideas in NaViT paper
`Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution` - https://arxiv.org/abs/2307.06304
This is a WIP, TODO:
* significant additions to dataset pipeline (data loading / collation) to support sequences required
* token (patch) dropout needs to be implemented
* wider variety of position embedding options
"""
import logging
import math
from collections import OrderedDict
from dataclasses import dataclass, field
from functools import partial
from typing import Callable, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.jit import Final
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, trunc_normal_tf_, \
resample_patch_embed, resample_abs_pos_embed, RmsNorm, PatchDropout, use_fused_attn, SwiGLUPacked, to_2tuple
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import generate_default_cfgs, register_model
from .vision_transformer import get_init_weights_vit
__all__ = ['VisionTransformerPacked'] # model_registry will add each entrypoint fn to this
_logger = logging.getLogger(__name__)
def extract_patches(
x,
patch_size=(16, 16),
channels_last=False,
flatten_grid=True,
pad=False,
):
B, C, H, W = x.shape
ph, pw = patch_size
if pad:
pad_h = (patch_size[0] - H % patch_size[0]) % patch_size[0]
pad_w = (patch_size[1] - W % patch_size[1]) % patch_size[1]
x = F.pad(x, (0, pad_w, 0, pad_h))
H += pad_h
W += pad_w
gh, gw = H // ph, W // pw
if channels_last:
#x = x.unfold(2, ph, pw).unfold(3, ph, pw).permute(0, 2, 3, 4, 5, 1).reshape(B, -1, ph * pw * C)
x = x.reshape(B, C, gh, ph, gw, pw).permute(0, 2, 4, 3, 5, 1) # B, gH, gW, pH, pW, C
else:
#x = x.permute(0, 2, 3, 1).unfold(1, ph, pw).unfold(2, ph, pw).reshape(B, -1, C * ph * pw)
x = x.reshape(B, C, gh, ph, gw, pw).permute(0, 2, 4, 1, 3, 5)
if flatten_grid:
x = x.reshape(B, -1, C * ph * pw)
else:
x = x.reshape(B, gh, gw, -1)
return x
@dataclass
class PackedSequence:
tokens: List[torch.Tensor] = field(default_factory=list)
pos_indices: List[torch.Tensor] = field(default_factory=list)
seq_ids: List[torch.Tensor] = field(default_factory=list)
seq_lens: List[int] = field(default_factory=list)
total_len: int = 0
num_images: int = 0
def add_image(self, tokens, pos_indices):
seq_id = self.num_images + 1
seq_len = len(tokens)
device = tokens.device
self.tokens.append(tokens)
self.pos_indices.append(pos_indices)
self.seq_ids.append(torch.tensor([seq_id] * seq_len, dtype=torch.int64, device=device))
self.seq_lens.append(seq_len)
self.total_len += seq_len
self.num_images += 1
def to_tensors(self, max_seq_len, max_num_seq):
"""
Args:
max_seq_len: maximum sequence length (pad to this)
max_num_seq: maximum # of sequences (images) packed into one sequence (across the batch)
Returns:
Tuple of tensors for packed batch of images
"""
assert self.total_len > 0
assert max_seq_len >= self.total_len
device = self.tokens[-1].device
dim = self.tokens[-1].shape[-1]
pad_len = max_seq_len - self.total_len
seq_pad = max(0, max_num_seq - len(self.seq_lens))
seq_lens = self.seq_lens + [0] * seq_pad if seq_pad else self.seq_lens
seq_lens = torch.tensor(seq_lens, dtype=torch.int64, device=device)
if pad_len:
tokens = self.tokens + [torch.zeros(pad_len, dim, device=device)]
pos_indices = self.pos_indices + [torch.zeros((pad_len, 2), dtype=torch.int64, device=device)]
seq_ids = self.seq_ids + [torch.zeros(pad_len, dtype=torch.int64, device=device)]
else:
tokens = self.tokens
pos_indices = self.pos_indices
seq_ids = self.seq_ids
tokens = torch.concat(tokens)
pos_indices = torch.concat(pos_indices)
seq_ids = torch.concat(seq_ids)
return tokens, pos_indices, seq_ids, seq_lens
def pack_images(
images: List[torch.Tensor],
patch_size: Tuple[int, int],
max_grid_size: Tuple[int, int],
pad_patches: bool = False,
max_images_per_sequence: int = 4,
):
max_seq_len = max_grid_size[0] * max_grid_size[1]
# patchify, generate position indices, apply patch drop, record seq lengths
img_tokens = []
img_pos_indices = []
img_seq_lens = []
for img in images:
assert img.ndim == 3
device = img.device
patches = extract_patches(img.unsqueeze(0), patch_size, flatten_grid=False, pad=pad_patches).squeeze(0)
grid_h, grid_w, dim = patches.shape
seq_len = grid_h * grid_w
if seq_len > max_seq_len:
_logger.error('Sequence length of image is too large, skipping.')
continue
pos_indices = torch.stack(
torch.meshgrid((
torch.arange(grid_h, device=device),
torch.arange(grid_w, device=device)),
indexing='ij'),
dim=-1,
)
# FIXME patch drop here
img_tokens.append(patches.flatten(0, 1))
img_pos_indices.append(pos_indices.flatten(0, 1))
img_seq_lens.append(seq_len)
del images
# sort by seq length largest -> smallest
img_seq_lens = torch.tensor(img_seq_lens, dtype=torch.long, device=device)
seq_sort_indices = torch.argsort(img_seq_lens, descending=True)
packed_sequences: List[PackedSequence] = [] # image sequences packed together
next_pos = 0
max_packed = 0
for _ in range(len(seq_sort_indices)):
idx_to_pack = seq_sort_indices[next_pos]
len_to_pack = img_seq_lens[idx_to_pack]
sequence = None
for p in packed_sequences:
# try over existing
if p.num_images >= max_images_per_sequence or p.total_len + len_to_pack > max_seq_len:
# will not fit in this sequence
continue
sequence = p
break
if sequence is None:
sequence = PackedSequence() # start fresh sequence
packed_sequences.append(sequence)
img_to_pack = img_tokens[idx_to_pack]
pos_to_pack = img_pos_indices[idx_to_pack]
sequence.add_image(img_to_pack, pos_to_pack)
max_packed = max(sequence.num_images, max_packed)
next_pos += 1
tensors = [p.to_tensors(max_seq_len=max_seq_len, max_num_seq=max_packed) for p in packed_sequences]
o = [torch.stack(t) for t in zip(*tensors)]
return tuple(o)
class Attention(nn.Module):
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0.,
proj_drop=0.,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if attn_mask is not None:
assert attn_mask.ndim == 4
if attn_mask.shape[1] != self.num_heads:
attn_mask = attn_mask.expand((-1, self.num_heads, -1, -1))
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if attn_mask is not None:
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
proj_drop=0.,
attn_drop=0.,
init_values=None,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=Mlp,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), attn_mask=attn_mask)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class ParallelScalingBlock(nn.Module):
""" Parallel ViT block (MLP & Attention in parallel)
Based on:
'Scaling Vision Transformers to 22 Billion Parameters` - https://arxiv.org/abs/2302.05442
"""
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
proj_drop=0.,
attn_drop=0.,
init_values=None,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=None, # NOTE: not used
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
mlp_hidden_dim = int(mlp_ratio * dim)
in_proj_out_dim = mlp_hidden_dim + 3 * dim
self.in_norm = norm_layer(dim)
self.in_proj = nn.Linear(dim, in_proj_out_dim, bias=qkv_bias)
self.in_split = [mlp_hidden_dim] + [dim] * 3
if qkv_bias:
self.register_buffer('qkv_bias', None)
self.register_parameter('mlp_bias', None)
else:
self.register_buffer('qkv_bias', torch.zeros(3 * dim), persistent=False)
self.mlp_bias = nn.Parameter(torch.zeros(mlp_hidden_dim))
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.attn_out_proj = nn.Linear(dim, dim)
self.mlp_drop = nn.Dropout(proj_drop)
self.mlp_act = act_layer()
self.mlp_out_proj = nn.Linear(mlp_hidden_dim, dim)
self.ls = LayerScale(dim, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def init_weights(self):
trunc_normal_tf_(self.in_proj.weight, std=(self.head_dim * self.num_heads) ** -0.5)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
B, N, C = x.shape
# Combined MLP fc1 & qkv projections
y = self.in_norm(x)
if self.mlp_bias is not None:
# Concat constant zero-bias for qkv w/ trainable mlp_bias.
# Appears faster than adding to x_mlp separately
y = F.linear(y, self.in_proj.weight, torch.cat((self.qkv_bias, self.mlp_bias)))
else:
y = self.in_proj(y)
x_mlp, q, k, v = torch.split(y, self.in_split, dim=-1)
# Dot product attention w/ qk norm
q = self.q_norm(q.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2)
k = self.k_norm(k.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2)
v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2)
if self.fused_attn:
x_attn = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x_attn = attn @ v
x_attn = x_attn.transpose(1, 2).reshape(B, N, C)
x_attn = self.attn_out_proj(x_attn)
# MLP activation, dropout, fc2
x_mlp = self.mlp_act(x_mlp)
x_mlp = self.mlp_drop(x_mlp)
x_mlp = self.mlp_out_proj(x_mlp)
# Add residual w/ drop path & layer scale applied
y = self.drop_path(self.ls(x_attn + x_mlp))
x = x + y
return x
class AttentionPoolLatent(nn.Module):
""" Attention pooling w/ latent query
"""
def __init__(
self,
in_features: int,
out_features: int = None,
embed_dim: int = None,
num_heads: int = 8,
qkv_bias: bool = True,
qk_norm: bool = False,
flatten_input: bool = True,
latent_size: int = 1,
latent_proj: bool = False,
latent_dim: int = None,
pos_embed: str = '',
proj_type: str = '',
pool_type: str = '',
norm_layer: Optional[nn.Module] = None,
drop: float = 0.0,
):
super().__init__()
embed_dim = embed_dim or in_features
out_features = out_features or in_features
assert embed_dim % num_heads == 0
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.scale = self.head_dim ** -0.5
self.flatten_input = flatten_input
self.pool = pool_type
if pos_embed == 'abs':
spatial_len = self.feat_size
self.pos_embed = nn.Parameter(torch.zeros(spatial_len, in_features))
else:
self.pos_embed = None
self.latent_dim = latent_dim or embed_dim
latent_size = latent_size or self.feat_size
self.latent_len = latent_size
self.latent = nn.Parameter(torch.zeros(self.latent_len, embed_dim))
if latent_proj:
self.q = nn.Linear(in_features, embed_dim, bias=qkv_bias)
else:
assert not latent_dim or latent_dim == embed_dim
self.q = None
self.kv = nn.Linear(in_features, embed_dim * 2, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.norm = norm_layer(out_features) if norm_layer is not None else nn.Identity()
if proj_type == 'linear':
self.proj = nn.Linear(embed_dim, out_features)
self.proj_drop = nn.Dropout(drop)
elif proj_type == 'mlp':
self.proj = Mlp(
embed_dim,
hidden_features=embed_dim * 4,
out_features=out_features,
drop=drop)
self.proj_drop = nn.Identity()
else:
assert out_features == embed_dim
self.proj = None
self.proj_drop = nn.Dropout(drop)
def init_weights(self):
if self.pos_embed is not None:
trunc_normal_tf_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
trunc_normal_tf_(self.latent, std=self.latent.shape[1] ** -0.5)
if self.q is not None:
trunc_normal_tf_(self.q.weight, std=self.q.weight.shape[1] ** -0.5)
if self.q.bias is not None:
nn.init.zeros_(self.q.bias)
trunc_normal_tf_(self.kv.weight, std=self.kv.weight.shape[1] ** -0.5)
if self.kv.bias is not None:
nn.init.zeros_(self.kv.bias)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
B, N, _ = x.shape
if self.pos_embed is not None:
# FIXME interpolate
x = x + self.pos_embed.unsqueeze(0).to(x.dtype)
q = self.latent if self.q is None else self.q(self.latent)
q = q.reshape(1, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
if attn_mask.shape[2] != q.shape[2]:
# expand latent q to match attention mask, TODO make this less implicit?
if q.shape[2] == 1:
q = q.expand(B, -1, attn_mask.shape[2], -1)
else:
assert attn_mask.shape[2] % q.shape[2] == 0
q = q.repeat(1, 1, attn_mask.shape[2] // q.shape[2], 1)
q = q.expand(B, -1, -1, -1)
else:
q = q.expand(B, -1, -1, -1)
latent_len = q.shape[2]
x = self.kv(x).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = x.unbind(0)
q = self.q_norm(q)
k = self.k_norm(k)
if False:
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn += attn_mask
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.transpose(1, 2).reshape(B, latent_len, -1)
x = self.norm(x)
if self.proj is not None:
shortcut = x
x = self.proj(x)
x = self.proj_drop(x)
x = x + shortcut
else:
x = self.proj_drop(x)
if self.pool == 'token':
x = x[:, 0]
return x
class VisionTransformerPacked(nn.Module):
""" Vision Transformer
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'avg',
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.,
qkv_bias: bool = True,
qk_norm: bool = False,
init_values: Optional[float] = None,
pre_norm: bool = False,
fc_norm: Optional[bool] = None,
drop_rate: float = 0.,
pos_drop_rate: float = 0.,
patch_drop_rate: float = 0.,
proj_drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
weight_init: str = '',
norm_layer: Optional[Callable] = None,
act_layer: Optional[Callable] = None,
block_fn: Callable = Block,
mlp_layer: Callable = Mlp,
):
"""
Args:
img_size: Input image size.
patch_size: Patch size.
in_chans: Number of image input channels.
num_classes: Number of classes for classification head.
global_pool: Type of global pooling for final sequence (default: 'token').
embed_dim: Transformer embedding dimension.
depth: Depth of transformer.
num_heads: Number of attention heads.
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
qkv_bias: Enable bias for qkv projections if True.
init_values: Layer-scale init values (layer-scale enabled if not None).
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
drop_rate: Head dropout rate.
pos_drop_rate: Position embedding dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
weight_init: Weight initialization scheme.
norm_layer: Normalization layer.
act_layer: MLP activation layer.
block_fn: Transformer block layer.
"""
super().__init__()
assert global_pool in ('', 'avg', 'attn')
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.grad_checkpointing = False
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_size = patch_h, patch_w = to_2tuple(patch_size)
self.img_size = img_h, img_w = to_2tuple(img_size) # NOTE this === 'maximum size'
self.grid_size = grid_h, grid_w = img_h // patch_h, img_w // patch_w
self.max_seq = grid_h * grid_w
patch_dim_in = in_chans * patch_h * patch_w
self.patch_embed = nn.Linear(patch_dim_in, embed_dim)
self.pos_embed_h = nn.Parameter(torch.randn(grid_h, embed_dim) * .02)
self.pos_embed_w = nn.Parameter(torch.randn(grid_w, embed_dim) * .02)
self.pos_drop = nn.Dropout(p=pos_drop_rate)
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
init_values=init_values,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
mlp_layer=mlp_layer,
)
for i in range(depth)])
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
if global_pool == 'avg':
self.attn_pool = None
else:
# FIXME attention pooling appears less stable in initial trials
self.attn_pool = AttentionPoolLatent(
self.embed_dim,
self.embed_dim,
num_heads=num_heads,
pos_embed='',
latent_proj=True,
proj_type='',
norm_layer=norm_layer,
)
# Classifier Head
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if weight_init != 'skip':
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'moco', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
trunc_normal_(self.pos_embed_h, std=.02)
trunc_normal_(self.pos_embed_w, std=.02)
named_apply(get_init_weights_vit(mode, head_bias), self)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed_h', 'pos_embed_w'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^embeds', # stem and embed # FIXME correct when design finalized
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'attn')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(
self,
tokens: Union[List[torch.Tensor], torch.Tensor],
pos_indices: Optional[torch.Tensor] = None,
seq_ids: Optional[torch.Tensor] = None,
seq_lens: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
):
if tokens.ndim == 4:
# B, C, H, W batch tensor will be converted to list and packed
# for compatibility with common image model usage (and initial testing)
tokens = tokens.unbind(0)
if isinstance(tokens, (list, tuple)):
tokens, pos_indices, seq_ids, seq_lens = pack_images(
tokens,
self.patch_size,
max_grid_size=self.grid_size,
pad_patches=True,
max_images_per_sequence=4,
)
assert tokens.ndim == 3
assert pos_indices is not None
assert seq_ids is not None
assert seq_lens is not None
tokens = self.patch_embed(tokens)
pos_index_h, pos_index_w = pos_indices.unbind(-1)
pos = self.pos_embed_h[pos_index_h] + self.pos_embed_w[pos_index_w]
tokens += pos
tokens = self.pos_drop(tokens)
tokens = self.norm_pre(tokens)
if attn_mask is None:
attn_mask = seq_ids.unsqueeze(2) == seq_ids.unsqueeze(1)
# NOTE: not applying key padding mask as padding tokens are already isolated to
# themselves via the above mask (padding has seq_id == 0). Doing an additional
# key padding mask results in fully masked rows which causes numerical issues.
# key_padding_mask = (seq_ids != 0).unsqueeze(1)
# attn_mask = attn_mask & key_padding_mask
attn_mask = attn_mask.unsqueeze(1)
if attn_mask.dtype == torch.bool:
dtype = tokens.dtype
min_val = torch.finfo(dtype).min
attn_mask = torch.zeros_like(attn_mask, dtype=dtype).masked_fill_(~attn_mask, min_val)
for b in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
tokens = torch.utils.checkpoint.checkpoint(
b, tokens, use_reentrant=False, attn_mask=attn_mask)
else:
tokens = b(tokens, attn_mask=attn_mask)
tokens = self.norm(tokens)
device = tokens.device
max_packing = seq_lens.shape[1]
seq_id_range = torch.arange(1, 1 + max_packing, device=device)
unpack_mask = seq_ids.unsqueeze(1) == seq_id_range[:, None]
seq_lens = seq_lens.reshape(-1)
valid_rows = seq_lens > 0
if self.attn_pool is not None:
# unpack_mask = unpack_mask & key_padding_mask
unpack_mask = unpack_mask.unsqueeze(1)
unpack_mask = torch.zeros_like(unpack_mask, dtype=tokens.dtype).masked_fill_(
~unpack_mask, torch.finfo(tokens.dtype).min)
tokens = self.attn_pool(tokens, attn_mask=unpack_mask)
tokens = tokens.reshape(-1, self.embed_dim)
tokens = tokens[valid_rows]
else:
tokens = tokens.unsqueeze(1).expand(-1, max_packing, -1, -1)[unpack_mask]
tokens = tokens.tensor_split(seq_lens.reshape(-1).cumsum(0)[:sum(valid_rows) - 1].cpu())
# tokens = tokens.unsqueeze(1) * unpack_mask.unsqueeze(-1).expand(-1, -1, -1, self.embed_dim)
# tokens = tokens.reshape(-1, tokens.shape[-2], tokens.shape[-1])
# seq_lens = seq_lens[valid_rows]
# tokens = tokens[valid_rows]
# FIXME sort out this mess, the boundary of features vs head is a bit messy with
# variable length sequence averaging vs attention pooling...
return tokens #, seq_lens
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
if isinstance(x, (list, tuple)):
x = torch.stack([t.mean(dim=0) for t in x], 0)
else:
# x = x.sum(dim=1) / seq_lens.reshape(-1, 1)
x = x.mean(dim=1)
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(
self,
tokens: Union[List[torch.Tensor], torch.Tensor],
pos_indices: Optional[torch.Tensor] = None,
seq_ids: Optional[torch.Tensor] = None,
seq_lens: Optional[torch.Tensor] = None,
):
x = self.forward_features(
tokens,
pos_indices=pos_indices,
seq_ids=seq_ids,
seq_lens=seq_lens,
)
x = self.forward_head(x)
return x
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'navit_medium_patch16_384': _cfg(),
'navit_base_patch32_224': _cfg(),
'navit_base_patch32_384': _cfg(),
'navit_base_patch16_224': _cfg(),
'navit_base_patch16_384': _cfg(),
})
def _create_vision_transformer_packed(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
return build_model_with_cfg(
VisionTransformerPacked,
variant,
pretrained,
#pretrained_filter_fn=checkpoint_filter_fn,
**kwargs,
)
@register_model
def navit_medium_patch16_384(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(
img_size=384, patch_size=16, embed_dim=512, depth=12, num_heads=8,
fc_norm=False, init_values=1e-5, qkv_bias=False)
model = _create_vision_transformer_packed(
'navit_medium_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def navit_base_patch32_224(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer_packed('navit_base_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def navit_base_patch32_384(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(img_size=384, patch_size=32, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer_packed('navit_base_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def navit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer_packed('navit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def navit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer_packed('navit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def navit_base_patch16_xp_384(pretrained=False, **kwargs) -> VisionTransformerPacked:
model_args = dict(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
qk_norm=True, pre_norm=True, block_fn=ParallelScalingBlock)
model = _create_vision_transformer_packed('navit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model