forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperiod.py
606 lines (507 loc) · 18 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
from __future__ import annotations
from datetime import (
datetime,
timedelta,
)
from typing import TYPE_CHECKING
import numpy as np
from pandas._libs import index as libindex
from pandas._libs.tslibs import (
BaseOffset,
NaT,
Period,
Resolution,
Tick,
)
from pandas._libs.tslibs.dtypes import OFFSET_TO_PERIOD_FREQSTR
from pandas.util._decorators import (
cache_readonly,
doc,
)
from pandas.core.dtypes.common import is_integer
from pandas.core.dtypes.dtypes import PeriodDtype
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.missing import is_valid_na_for_dtype
from pandas.core.arrays.period import (
PeriodArray,
period_array,
raise_on_incompatible,
validate_dtype_freq,
)
import pandas.core.common as com
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import maybe_extract_name
from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
from pandas.core.indexes.datetimes import (
DatetimeIndex,
Index,
)
from pandas.core.indexes.extension import inherit_names
if TYPE_CHECKING:
from collections.abc import Hashable
from pandas._typing import (
Dtype,
DtypeObj,
Self,
npt,
)
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update({"target_klass": "PeriodIndex or list of Periods"})
_shared_doc_kwargs = {
"klass": "PeriodArray",
}
# --- Period index sketch
def _new_PeriodIndex(cls, **d):
# GH13277 for unpickling
values = d.pop("data")
if values.dtype == "int64":
freq = d.pop("freq", None)
dtype = PeriodDtype(freq)
values = PeriodArray(values, dtype=dtype)
return cls._simple_new(values, **d)
else:
return cls(values, **d)
@inherit_names(
["strftime", "start_time", "end_time"] + PeriodArray._field_ops,
PeriodArray,
wrap=True,
)
@inherit_names(["is_leap_year"], PeriodArray)
class PeriodIndex(DatetimeIndexOpsMixin):
"""
Immutable ndarray holding ordinal values indicating regular periods in time.
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
Parameters
----------
data : array-like (1d int np.ndarray or PeriodArray), optional
Optional period-like data to construct index with.
freq : str or period object, optional
One of pandas period strings or corresponding objects.
dtype : str or PeriodDtype, default None
A dtype from which to extract a freq.
copy : bool
Make a copy of input ndarray.
name : str, default None
Name of the resulting PeriodIndex.
Attributes
----------
day
dayofweek
day_of_week
dayofyear
day_of_year
days_in_month
daysinmonth
end_time
freq
freqstr
hour
is_leap_year
minute
month
quarter
qyear
second
start_time
week
weekday
weekofyear
year
Methods
-------
asfreq
strftime
to_timestamp
from_fields
from_ordinals
Raises
------
ValueError
Passing the parameter data as a list without specifying either freq or
dtype will raise a ValueError: "freq not specified and cannot be inferred"
See Also
--------
Index : The base pandas Index type.
Period : Represents a period of time.
DatetimeIndex : Index with datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
period_range : Create a fixed-frequency PeriodIndex.
Examples
--------
>>> idx = pd.PeriodIndex(data=["2000Q1", "2002Q3"], freq="Q")
>>> idx
PeriodIndex(['2000Q1', '2002Q3'], dtype='period[Q-DEC]')
"""
_typ = "periodindex"
_data: PeriodArray
freq: BaseOffset
dtype: PeriodDtype
_data_cls = PeriodArray
_supports_partial_string_indexing = True
@property
def _engine_type(self) -> type[libindex.PeriodEngine]:
return libindex.PeriodEngine
@cache_readonly
def _resolution_obj(self) -> Resolution:
# for compat with DatetimeIndex
return self.dtype._resolution_obj
# --------------------------------------------------------------------
# methods that dispatch to array and wrap result in Index
# These are defined here instead of via inherit_names for mypy
@doc(
PeriodArray.asfreq,
other="arrays.PeriodArray",
other_name="PeriodArray",
**_shared_doc_kwargs,
)
def asfreq(self, freq=None, how: str = "E") -> Self:
arr = self._data.asfreq(freq, how)
return type(self)._simple_new(arr, name=self.name)
@doc(PeriodArray.to_timestamp)
def to_timestamp(self, freq=None, how: str = "start") -> DatetimeIndex:
arr = self._data.to_timestamp(freq, how)
return DatetimeIndex._simple_new(arr, name=self.name)
@property
@doc(PeriodArray.hour.fget)
def hour(self) -> Index:
return Index(self._data.hour, name=self.name)
@property
@doc(PeriodArray.minute.fget)
def minute(self) -> Index:
return Index(self._data.minute, name=self.name)
@property
@doc(PeriodArray.second.fget)
def second(self) -> Index:
return Index(self._data.second, name=self.name)
# ------------------------------------------------------------------------
# Index Constructors
def __new__(
cls,
data=None,
freq=None,
dtype: Dtype | None = None,
copy: bool = False,
name: Hashable | None = None,
) -> Self:
refs = None
if not copy and isinstance(data, (Index, ABCSeries)):
refs = data._references
name = maybe_extract_name(name, data, cls)
freq = validate_dtype_freq(dtype, freq)
# PeriodIndex allow PeriodIndex(period_index, freq=different)
# Let's not encourage that kind of behavior in PeriodArray.
if freq and isinstance(data, cls) and data.freq != freq:
# TODO: We can do some of these with no-copy / coercion?
# e.g. D -> 2D seems to be OK
data = data.asfreq(freq)
# don't pass copy here, since we copy later.
data = period_array(data=data, freq=freq)
if copy:
data = data.copy()
return cls._simple_new(data, name=name, refs=refs)
@classmethod
def from_fields(
cls,
*,
year=None,
quarter=None,
month=None,
day=None,
hour=None,
minute=None,
second=None,
freq=None,
) -> Self:
"""
Construct a PeriodIndex from fields (year, month, day, etc.).
Parameters
----------
year : int, array, or Series, default None
Year for the PeriodIndex.
quarter : int, array, or Series, default None
Quarter for the PeriodIndex.
month : int, array, or Series, default None
Month for the PeriodIndex.
day : int, array, or Series, default None
Day for the PeriodIndex.
hour : int, array, or Series, default None
Hour for the PeriodIndex.
minute : int, array, or Series, default None
Minute for the PeriodIndex.
second : int, array, or Series, default None
Second for the PeriodIndex.
freq : str or period object, optional
One of pandas period strings or corresponding objects.
Returns
-------
PeriodIndex
See Also
--------
PeriodIndex.from_ordinals : Construct a PeriodIndex from ordinals.
PeriodIndex.to_timestamp : Cast to DatetimeArray/Index.
Examples
--------
>>> idx = pd.PeriodIndex.from_fields(year=[2000, 2002], quarter=[1, 3])
>>> idx
PeriodIndex(['2000Q1', '2002Q3'], dtype='period[Q-DEC]')
"""
fields = {
"year": year,
"quarter": quarter,
"month": month,
"day": day,
"hour": hour,
"minute": minute,
"second": second,
}
fields = {key: value for key, value in fields.items() if value is not None}
arr = PeriodArray._from_fields(fields=fields, freq=freq)
return cls._simple_new(arr)
@classmethod
def from_ordinals(cls, ordinals, *, freq, name=None) -> Self:
"""
Construct a PeriodIndex from ordinals.
Parameters
----------
ordinals : array-like of int
The period offsets from the proleptic Gregorian epoch.
freq : str or period object
One of pandas period strings or corresponding objects.
name : str, default None
Name of the resulting PeriodIndex.
Returns
-------
PeriodIndex
See Also
--------
PeriodIndex.from_fields : Construct a PeriodIndex from fields
(year, month, day, etc.).
PeriodIndex.to_timestamp : Cast to DatetimeArray/Index.
Examples
--------
>>> idx = pd.PeriodIndex.from_ordinals([-1, 0, 1], freq="Q")
>>> idx
PeriodIndex(['1969Q4', '1970Q1', '1970Q2'], dtype='period[Q-DEC]')
"""
ordinals = np.asarray(ordinals, dtype=np.int64)
dtype = PeriodDtype(freq)
data = PeriodArray._simple_new(ordinals, dtype=dtype)
return cls._simple_new(data, name=name)
# ------------------------------------------------------------------------
# Data
@property
def values(self) -> npt.NDArray[np.object_]:
return np.asarray(self, dtype=object)
def _maybe_convert_timedelta(self, other) -> int | npt.NDArray[np.int64]:
"""
Convert timedelta-like input to an integer multiple of self.freq
Parameters
----------
other : timedelta, np.timedelta64, DateOffset, int, np.ndarray
Returns
-------
converted : int, np.ndarray[int64]
Raises
------
IncompatibleFrequency : if the input cannot be written as a multiple
of self.freq. Note IncompatibleFrequency subclasses ValueError.
"""
if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)):
if isinstance(self.freq, Tick):
# _check_timedeltalike_freq_compat will raise if incompatible
delta = self._data._check_timedeltalike_freq_compat(other)
return delta
elif isinstance(other, BaseOffset):
if other.base == self.freq.base:
return other.n
raise raise_on_incompatible(self, other)
elif is_integer(other):
assert isinstance(other, int)
return other
# raise when input doesn't have freq
raise raise_on_incompatible(self, None)
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
"""
Can we compare values of the given dtype to our own?
"""
return self.dtype == dtype
# ------------------------------------------------------------------------
# Index Methods
def asof_locs(self, where: Index, mask: npt.NDArray[np.bool_]) -> np.ndarray:
"""
where : array of timestamps
mask : np.ndarray[bool]
Array of booleans where data is not NA.
"""
if isinstance(where, DatetimeIndex):
where = PeriodIndex(where._values, freq=self.freq)
elif not isinstance(where, PeriodIndex):
raise TypeError("asof_locs `where` must be DatetimeIndex or PeriodIndex")
return super().asof_locs(where, mask)
@property
def is_full(self) -> bool:
"""
Returns True if this PeriodIndex is range-like in that all Periods
between start and end are present, in order.
"""
if len(self) == 0:
return True
if not self.is_monotonic_increasing:
raise ValueError("Index is not monotonic")
values = self.asi8
return bool(((values[1:] - values[:-1]) < 2).all())
@property
def inferred_type(self) -> str:
# b/c data is represented as ints make sure we can't have ambiguous
# indexing
return "period"
# ------------------------------------------------------------------------
# Indexing Methods
def _convert_tolerance(self, tolerance, target):
# Returned tolerance must be in dtype/units so that
# `|self._get_engine_target() - target._engine_target()| <= tolerance`
# is meaningful. Since PeriodIndex returns int64 for engine_target,
# we may need to convert timedelta64 tolerance to int64.
tolerance = super()._convert_tolerance(tolerance, target)
if self.dtype == target.dtype:
# convert tolerance to i8
tolerance = self._maybe_convert_timedelta(tolerance)
return tolerance
def get_loc(self, key):
"""
Get integer location for requested label.
Parameters
----------
key : Period, NaT, str, or datetime
String or datetime key must be parsable as Period.
Returns
-------
loc : int or ndarray[int64]
Raises
------
KeyError
Key is not present in the index.
TypeError
If key is listlike or otherwise not hashable.
"""
orig_key = key
self._check_indexing_error(key)
if is_valid_na_for_dtype(key, self.dtype):
key = NaT
elif isinstance(key, str):
try:
parsed, reso = self._parse_with_reso(key)
except ValueError as err:
# A string with invalid format
raise KeyError(f"Cannot interpret '{key}' as period") from err
if self._can_partial_date_slice(reso):
try:
return self._partial_date_slice(reso, parsed)
except KeyError as err:
raise KeyError(key) from err
if reso == self._resolution_obj:
# the reso < self._resolution_obj case goes
# through _get_string_slice
key = self._cast_partial_indexing_scalar(parsed)
else:
raise KeyError(key)
elif isinstance(key, Period):
self._disallow_mismatched_indexing(key)
elif isinstance(key, datetime):
key = self._cast_partial_indexing_scalar(key)
else:
# in particular integer, which Period constructor would cast to string
raise KeyError(key)
try:
return Index.get_loc(self, key)
except KeyError as err:
raise KeyError(orig_key) from err
def _disallow_mismatched_indexing(self, key: Period) -> None:
if key._dtype != self.dtype:
raise KeyError(key)
def _cast_partial_indexing_scalar(self, label: datetime) -> Period:
try:
period = Period(label, freq=self.freq)
except ValueError as err:
# we cannot construct the Period
raise KeyError(label) from err
return period
@doc(DatetimeIndexOpsMixin._maybe_cast_slice_bound)
def _maybe_cast_slice_bound(self, label, side: str):
if isinstance(label, datetime):
label = self._cast_partial_indexing_scalar(label)
return super()._maybe_cast_slice_bound(label, side)
def _parsed_string_to_bounds(self, reso: Resolution, parsed: datetime):
freq = OFFSET_TO_PERIOD_FREQSTR.get(reso.attr_abbrev, reso.attr_abbrev)
iv = Period(parsed, freq=freq)
return (iv.asfreq(self.freq, how="start"), iv.asfreq(self.freq, how="end"))
@doc(DatetimeIndexOpsMixin.shift)
def shift(self, periods: int = 1, freq=None) -> Self:
if freq is not None:
raise TypeError(
f"`freq` argument is not supported for {type(self).__name__}.shift"
)
return self + periods
def period_range(
start=None,
end=None,
periods: int | None = None,
freq=None,
name: Hashable | None = None,
) -> PeriodIndex:
"""
Return a fixed frequency PeriodIndex.
The day (calendar) is the default frequency.
Parameters
----------
start : str, datetime, date, pandas.Timestamp, or period-like, default None
Left bound for generating periods.
end : str, datetime, date, pandas.Timestamp, or period-like, default None
Right bound for generating periods.
periods : int, default None
Number of periods to generate.
freq : str or DateOffset, optional
Frequency alias. By default the freq is taken from `start` or `end`
if those are Period objects. Otherwise, the default is ``"D"`` for
daily frequency.
name : str, default None
Name of the resulting PeriodIndex.
Returns
-------
PeriodIndex
Notes
-----
Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
must be specified.
To learn more about the frequency strings, please see
:ref:`this link<timeseries.offset_aliases>`.
Examples
--------
>>> pd.period_range(start="2017-01-01", end="2018-01-01", freq="M")
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06',
'2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12',
'2018-01'],
dtype='period[M]')
If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor
endpoints for a ``PeriodIndex`` with frequency matching that of the
``period_range`` constructor.
>>> pd.period_range(
... start=pd.Period("2017Q1", freq="Q"),
... end=pd.Period("2017Q2", freq="Q"),
... freq="M",
... )
PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],
dtype='period[M]')
"""
if com.count_not_none(start, end, periods) != 2:
raise ValueError(
"Of the three parameters: start, end, and periods, "
"exactly two must be specified"
)
if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)):
freq = "D"
data, freq = PeriodArray._generate_range(start, end, periods, freq)
dtype = PeriodDtype(freq)
data = PeriodArray(data, dtype=dtype)
return PeriodIndex(data, name=name)