@@ -134,9 +134,9 @@ def normalRDD(
134
134
>>> stats = x.stats()
135
135
>>> stats.count()
136
136
1000
137
- >>> abs(stats.mean() - 0.0) < 0.1
137
+ >>> bool( abs(stats.mean() - 0.0) < 0.1)
138
138
True
139
- >>> abs(stats.stdev() - 1.0) < 0.1
139
+ >>> bool( abs(stats.stdev() - 1.0) < 0.1)
140
140
True
141
141
"""
142
142
return callMLlibFunc ("normalRDD" , sc ._jsc , size , numPartitions , seed )
@@ -186,10 +186,10 @@ def logNormalRDD(
186
186
>>> stats = x.stats()
187
187
>>> stats.count()
188
188
1000
189
- >>> abs(stats.mean() - expMean) < 0.5
189
+ >>> bool( abs(stats.mean() - expMean) < 0.5)
190
190
True
191
191
>>> from math import sqrt
192
- >>> abs(stats.stdev() - expStd) < 0.5
192
+ >>> bool( abs(stats.stdev() - expStd) < 0.5)
193
193
True
194
194
"""
195
195
return callMLlibFunc (
@@ -238,7 +238,7 @@ def poissonRDD(
238
238
>>> abs(stats.mean() - mean) < 0.5
239
239
True
240
240
>>> from math import sqrt
241
- >>> abs(stats.stdev() - sqrt(mean)) < 0.5
241
+ >>> bool( abs(stats.stdev() - sqrt(mean)) < 0.5)
242
242
True
243
243
"""
244
244
return callMLlibFunc ("poissonRDD" , sc ._jsc , float (mean ), size , numPartitions , seed )
@@ -285,7 +285,7 @@ def exponentialRDD(
285
285
>>> abs(stats.mean() - mean) < 0.5
286
286
True
287
287
>>> from math import sqrt
288
- >>> abs(stats.stdev() - sqrt(mean)) < 0.5
288
+ >>> bool( abs(stats.stdev() - sqrt(mean)) < 0.5)
289
289
True
290
290
"""
291
291
return callMLlibFunc ("exponentialRDD" , sc ._jsc , float (mean ), size , numPartitions , seed )
@@ -336,9 +336,9 @@ def gammaRDD(
336
336
>>> stats = x.stats()
337
337
>>> stats.count()
338
338
1000
339
- >>> abs(stats.mean() - expMean) < 0.5
339
+ >>> bool( abs(stats.mean() - expMean) < 0.5)
340
340
True
341
- >>> abs(stats.stdev() - expStd) < 0.5
341
+ >>> bool( abs(stats.stdev() - expStd) < 0.5)
342
342
True
343
343
"""
344
344
return callMLlibFunc (
@@ -384,7 +384,7 @@ def uniformVectorRDD(
384
384
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
385
385
>>> mat.shape
386
386
(10, 10)
387
- >>> mat.max() <= 1.0 and mat.min() >= 0.0
387
+ >>> bool( mat.max() <= 1.0 and mat.min() >= 0.0)
388
388
True
389
389
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
390
390
4
@@ -430,9 +430,9 @@ def normalVectorRDD(
430
430
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect())
431
431
>>> mat.shape
432
432
(100, 100)
433
- >>> abs(mat.mean() - 0.0) < 0.1
433
+ >>> bool( abs(mat.mean() - 0.0) < 0.1)
434
434
True
435
- >>> abs(mat.std() - 1.0) < 0.1
435
+ >>> bool( abs(mat.std() - 1.0) < 0.1)
436
436
True
437
437
"""
438
438
return callMLlibFunc ("normalVectorRDD" , sc ._jsc , numRows , numCols , numPartitions , seed )
@@ -488,9 +488,9 @@ def logNormalVectorRDD(
488
488
>>> mat = np.matrix(m)
489
489
>>> mat.shape
490
490
(100, 100)
491
- >>> abs(mat.mean() - expMean) < 0.1
491
+ >>> bool( abs(mat.mean() - expMean) < 0.1)
492
492
True
493
- >>> abs(mat.std() - expStd) < 0.1
493
+ >>> bool( abs(mat.std() - expStd) < 0.1)
494
494
True
495
495
"""
496
496
return callMLlibFunc (
@@ -545,13 +545,13 @@ def poissonVectorRDD(
545
545
>>> import numpy as np
546
546
>>> mean = 100.0
547
547
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1)
548
- >>> mat = np.mat (rdd.collect())
548
+ >>> mat = np.asmatrix (rdd.collect())
549
549
>>> mat.shape
550
550
(100, 100)
551
- >>> abs(mat.mean() - mean) < 0.5
551
+ >>> bool( abs(mat.mean() - mean) < 0.5)
552
552
True
553
553
>>> from math import sqrt
554
- >>> abs(mat.std() - sqrt(mean)) < 0.5
554
+ >>> bool( abs(mat.std() - sqrt(mean)) < 0.5)
555
555
True
556
556
"""
557
557
return callMLlibFunc (
@@ -599,13 +599,13 @@ def exponentialVectorRDD(
599
599
>>> import numpy as np
600
600
>>> mean = 0.5
601
601
>>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1)
602
- >>> mat = np.mat (rdd.collect())
602
+ >>> mat = np.asmatrix (rdd.collect())
603
603
>>> mat.shape
604
604
(100, 100)
605
- >>> abs(mat.mean() - mean) < 0.5
605
+ >>> bool( abs(mat.mean() - mean) < 0.5)
606
606
True
607
607
>>> from math import sqrt
608
- >>> abs(mat.std() - sqrt(mean)) < 0.5
608
+ >>> bool( abs(mat.std() - sqrt(mean)) < 0.5)
609
609
True
610
610
"""
611
611
return callMLlibFunc (
@@ -662,9 +662,9 @@ def gammaVectorRDD(
662
662
>>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect())
663
663
>>> mat.shape
664
664
(100, 100)
665
- >>> abs(mat.mean() - expMean) < 0.1
665
+ >>> bool( abs(mat.mean() - expMean) < 0.1)
666
666
True
667
- >>> abs(mat.std() - expStd) < 0.1
667
+ >>> bool( abs(mat.std() - expStd) < 0.1)
668
668
True
669
669
"""
670
670
return callMLlibFunc (
0 commit comments