forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashtable_class_helper.pxi.in
912 lines (741 loc) · 26.7 KB
/
hashtable_class_helper.pxi.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
"""
Template for each `dtype` helper function for hashtable
WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""
from missing cimport is_null_datetimelike
#----------------------------------------------------------------------
# VectorData
#----------------------------------------------------------------------
{{py:
# name, dtype, arg
# the generated StringVector is not actually used
# but is included for completeness (rather ObjectVector is used
# for uniques in hashtables)
dtypes = [('Float64', 'float64', 'float64_t'),
('Int64', 'int64', 'int64_t'),
('String', 'string', 'char *'),
('UInt64', 'uint64', 'uint64_t')]
}}
{{for name, dtype, arg in dtypes}}
{{if dtype != 'int64'}}
ctypedef struct {{name}}VectorData:
{{arg}} *data
size_t n, m
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef inline void append_data_{{dtype}}({{name}}VectorData *data,
{{arg}} x) nogil:
data.data[data.n] = x
data.n += 1
{{endfor}}
ctypedef fused vector_data:
Int64VectorData
UInt64VectorData
Float64VectorData
StringVectorData
cdef inline bint needs_resize(vector_data *data) nogil:
return data.n == data.m
#----------------------------------------------------------------------
# Vector
#----------------------------------------------------------------------
{{py:
# name, dtype, arg, idtype
dtypes = [('Float64', 'float64', 'float64_t', 'np.float64'),
('UInt64', 'uint64', 'uint64_t', 'np.uint64'),
('Int64', 'int64', 'int64_t', 'np.int64')]
}}
{{for name, dtype, arg, idtype in dtypes}}
cdef class {{name}}Vector:
{{if dtype != 'int64'}}
cdef:
bint external_view_exists
{{name}}VectorData *data
ndarray ao
{{endif}}
def __cinit__(self):
self.data = <{{name}}VectorData *>PyMem_Malloc(
sizeof({{name}}VectorData))
if not self.data:
raise MemoryError()
self.external_view_exists = False
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.ao = np.empty(self.data.m, dtype={{idtype}})
self.data.data = <{{arg}}*> self.ao.data
cdef resize(self):
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
self.ao.resize(self.data.m, refcheck=False)
self.data.data = <{{arg}}*> self.ao.data
def __dealloc__(self):
if self.data is not NULL:
PyMem_Free(self.data)
self.data = NULL
def __len__(self):
return self.data.n
cpdef to_array(self):
if self.data.m != self.data.n:
if self.external_view_exists:
# should never happen
raise ValueError("should have raised on append()")
self.ao.resize(self.data.n, refcheck=False)
self.data.m = self.data.n
self.external_view_exists = True
return self.ao
cdef inline void append(self, {{arg}} x):
if needs_resize(self.data):
if self.external_view_exists:
raise ValueError("external reference but Vector.resize() needed")
self.resize()
append_data_{{dtype}}(self.data, x)
cdef extend(self, {{arg}}[:] x):
for i in range(len(x)):
self.append(x[i])
{{endfor}}
cdef class StringVector:
cdef:
StringVectorData *data
bint external_view_exists
def __cinit__(self):
self.data = <StringVectorData *>PyMem_Malloc(
sizeof(StringVectorData))
if not self.data:
raise MemoryError()
self.external_view_exists = False
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.data.data = <char **> malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
cdef resize(self):
cdef:
char **orig_data
size_t i, m
m = self.data.m
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
orig_data = self.data.data
self.data.data = <char **> malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
for i in range(m):
self.data.data[i] = orig_data[i]
def __dealloc__(self):
if self.data is not NULL:
if self.data.data is not NULL:
free(self.data.data)
PyMem_Free(self.data)
self.data = NULL
def __len__(self):
return self.data.n
def to_array(self):
cdef:
ndarray ao
size_t n
object val
ao = np.empty(self.data.n, dtype=np.object)
for i in range(self.data.n):
val = self.data.data[i]
ao[i] = val
self.external_view_exists = True
self.data.m = self.data.n
return ao
cdef inline void append(self, char * x):
if needs_resize(self.data):
self.resize()
append_data_string(self.data, x)
cdef extend(self, ndarray[:] x):
for i in range(len(x)):
self.append(x[i])
cdef class ObjectVector:
cdef:
PyObject **data
size_t n, m
ndarray ao
bint external_view_exists
def __cinit__(self):
self.external_view_exists = False
self.n = 0
self.m = _INIT_VEC_CAP
self.ao = np.empty(_INIT_VEC_CAP, dtype=object)
self.data = <PyObject**> self.ao.data
def __len__(self):
return self.n
cdef inline append(self, object o):
if self.n == self.m:
if self.external_view_exists:
raise ValueError("external reference but Vector.resize() needed")
self.m = max(self.m * 2, _INIT_VEC_CAP)
self.ao.resize(self.m, refcheck=False)
self.data = <PyObject**> self.ao.data
Py_INCREF(o)
self.data[self.n] = <PyObject*> o
self.n += 1
def to_array(self):
if self.m != self.n:
if self.external_view_exists:
raise ValueError("should have raised on append()")
self.ao.resize(self.n, refcheck=False)
self.m = self.n
self.external_view_exists = True
return self.ao
cdef extend(self, ndarray[:] x):
for i in range(len(x)):
self.append(x[i])
#----------------------------------------------------------------------
# HashTable
#----------------------------------------------------------------------
cdef class HashTable:
pass
{{py:
# name, dtype, null_condition, float_group
dtypes = [('Float64', 'float64', 'val != val', True, 'NAN'),
('UInt64', 'uint64', 'False', False, '0'),
('Int64', 'int64', 'val == iNaT', False, 'iNaT')]
def get_dispatch(dtypes):
for (name, dtype, null_condition, float_group, na_value) in dtypes:
unique_template = """\
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{dtype}_t val, fill_value_val, ngaps_val
khiter_t k
bint seen_na = 0
{name}Vector uniques = {name}Vector()
{name}VectorData *ud
ud = uniques.data
fill_value_val = fill_value
ngaps_val = ngaps
with nogil:
if ngaps_val > 0:
k = kh_get_{dtype}(self.table, fill_value_val)
if k == self.table.n_buckets:
kh_put_{dtype}(self.table, fill_value_val, &ret)
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{dtype}(ud, fill_value_val)
for i in range(n):
val = values[i]
IF {float_group}:
if val == val:
k = kh_get_{dtype}(self.table, val)
if k == self.table.n_buckets:
kh_put_{dtype}(self.table, val, &ret)
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{dtype}(ud, val)
elif not seen_na:
seen_na = 1
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{dtype}(ud, NAN)
ELSE:
k = kh_get_{dtype}(self.table, val)
if k == self.table.n_buckets:
kh_put_{dtype}(self.table, val, &ret)
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{dtype}(ud, val)
return uniques.to_array()
"""
unique_template = unique_template.format(name=name, dtype=dtype, null_condition=null_condition, float_group=float_group)
yield (name, dtype, null_condition, float_group, unique_template, na_value)
}}
{{for name, dtype, null_condition, float_group, unique_template, na_value in get_dispatch(dtypes)}}
cdef class {{name}}HashTable(HashTable):
def __cinit__(self, size_hint=1):
self.table = kh_init_{{dtype}}()
if size_hint is not None:
kh_resize_{{dtype}}(self.table, size_hint)
def __len__(self):
return self.table.size
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_{{dtype}}(self.table)
self.table = NULL
def __contains__(self, object key):
cdef khiter_t k
k = kh_get_{{dtype}}(self.table, key)
return k != self.table.n_buckets
def sizeof(self, deep=False):
""" return the size of my table in bytes """
return self.table.n_buckets * (sizeof({{dtype}}_t) + # keys
sizeof(size_t) + # vals
sizeof(uint32_t)) # flags
cpdef get_item(self, {{dtype}}_t val):
cdef khiter_t k
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, {{dtype}}_t key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
k = kh_put_{{dtype}}(self.table, key, &ret)
self.table.keys[k] = key
if kh_exist_{{dtype}}(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
@cython.boundscheck(False)
def map(self, {{dtype}}_t[:] keys, int64_t[:] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{dtype}}_t key
khiter_t k
with nogil:
for i in range(n):
key = keys[i]
k = kh_put_{{dtype}}(self.table, key, &ret)
self.table.vals[k] = <Py_ssize_t> values[i]
@cython.boundscheck(False)
def map_locations(self, ndarray[{{dtype}}_t, ndim=1] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{dtype}}_t val
khiter_t k
with nogil:
for i in range(n):
val = values[i]
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = i
@cython.boundscheck(False)
def lookup(self, {{dtype}}_t[:] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{dtype}}_t val
khiter_t k
int64_t[:] locs = np.empty(n, dtype=np.int64)
with nogil:
for i in range(n):
val = values[i]
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
return np.asarray(locs)
def factorize(self, {{dtype}}_t values):
uniques = {{name}}Vector()
labels = self.get_labels(values, uniques, 0, 0)
return uniques.to_array(), labels
@cython.boundscheck(False)
def get_labels(self, {{dtype}}_t[:] values, {{name}}Vector uniques,
Py_ssize_t count_prior, Py_ssize_t na_sentinel,
bint check_null=True, fill_value={{na_value}}, ngaps=0):
cdef:
Py_ssize_t i, n = len(values)
int64_t[:] labels
Py_ssize_t idx, count = count_prior
int ret = 0
{{dtype}}_t val, fill_value_val, ngaps_val
khiter_t k
{{name}}VectorData *ud
labels = np.empty(n, dtype=np.int64)
ud = uniques.data
with nogil:
for i in range(n):
val = values[i]
if check_null and {{null_condition}}:
labels[i] = na_sentinel
continue
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = idx
else:
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = count
if needs_resize(ud):
with gil:
if uniques.external_view_exists:
raise ValueError("external reference to uniques held, "
"but Vector.resize() needed")
uniques.resize()
append_data_{{dtype}}(ud, val)
labels[i] = count
count += 1
return np.asarray(labels)
@cython.boundscheck(False)
def get_labels_groupby(self, {{dtype}}_t[:] values):
cdef:
Py_ssize_t i, n = len(values)
int64_t[:] labels
Py_ssize_t idx, count = 0
int ret = 0
{{dtype}}_t val
khiter_t k
{{name}}Vector uniques = {{name}}Vector()
{{name}}VectorData *ud
labels = np.empty(n, dtype=np.int64)
ud = uniques.data
with nogil:
for i in range(n):
val = values[i]
# specific for groupby
{{if dtype != 'uint64'}}
if val < 0:
labels[i] = -1
continue
{{endif}}
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = idx
else:
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = count
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{{dtype}}(ud, val)
labels[i] = count
count += 1
arr_uniques = uniques.to_array()
return np.asarray(labels), arr_uniques
@cython.boundscheck(False)
def unique(self, ndarray[{{dtype}}_t, ndim=1] values, fill_value={{na_value}}, ngaps=0):
if values.flags.writeable:
# If the value is writeable (mutable) then use memview
return self.unique_memview(values, fill_value=fill_value, ngaps=ngaps)
# We cannot use the memoryview version on readonly-buffers due to
# a limitation of Cython's typed memoryviews. Instead we can use
# the slightly slower Cython ndarray type directly.
# see https://github.com/cython/cython/issues/1605
{{unique_template}}
@cython.boundscheck(False)
def unique_memview(self, {{dtype}}_t[:] values, fill_value={{na_value}}, ngaps=0):
{{unique_template}}
{{endfor}}
cdef class StringHashTable(HashTable):
# these by-definition *must* be strings
# or a sentinel np.nan / None missing value
na_string_sentinel = '__nan__'
def __init__(self, int size_hint=1):
self.table = kh_init_str()
if size_hint is not None:
kh_resize_str(self.table, size_hint)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_str(self.table)
self.table = NULL
def sizeof(self, deep=False):
""" return the size of my table in bytes """
return self.table.n_buckets * (sizeof(char *) + # keys
sizeof(size_t) + # vals
sizeof(uint32_t)) # flags
cpdef get_item(self, object val):
cdef:
khiter_t k
char *v
v = util.get_c_string(val)
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, object key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
char *v
v = util.get_c_string(val)
k = kh_put_str(self.table, v, &ret)
self.table.keys[k] = key
if kh_exist_str(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
@cython.boundscheck(False)
def get_indexer(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
ndarray[int64_t] labels = np.empty(n, dtype=np.int64)
int64_t *resbuf = <int64_t*> labels.data
khiter_t k
kh_str_t *table = self.table
char *v
char **vecs
vecs = <char **> malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
v = util.get_c_string(val)
vecs[i] = v
with nogil:
for i in range(n):
k = kh_get_str(table, vecs[i])
if k != table.n_buckets:
resbuf[i] = table.vals[k]
else:
resbuf[i] = -1
free(vecs)
return labels
@cython.boundscheck(False)
def unique(self, ndarray[object] values):
cdef:
Py_ssize_t i, count, n = len(values)
int64_t[:] uindexer
int ret = 0
object val
ObjectVector uniques
khiter_t k
char *v
char **vecs
vecs = <char **> malloc(n * sizeof(char *))
uindexer = np.empty(n, dtype=np.int64)
for i in range(n):
val = values[i]
v = util.get_c_string(val)
vecs[i] = v
count = 0
with nogil:
for i in range(n):
v = vecs[i]
k = kh_get_str(self.table, v)
if k == self.table.n_buckets:
kh_put_str(self.table, v, &ret)
uindexer[count] = i
count += 1
free(vecs)
# uniques
uniques = ObjectVector()
for i in range(count):
uniques.append(values[uindexer[i]])
return uniques.to_array()
def factorize(self, ndarray[object] values):
uniques = ObjectVector()
labels = self.get_labels(values, uniques, 0, 0)
return uniques.to_array(), labels
@cython.boundscheck(False)
def lookup(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
char *v
khiter_t k
int64_t[:] locs = np.empty(n, dtype=np.int64)
# these by-definition *must* be strings
vecs = <char **> malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if PyUnicode_Check(val) or PyString_Check(val):
v = util.get_c_string(val)
else:
v = util.get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
free(vecs)
return np.asarray(locs)
@cython.boundscheck(False)
def map_locations(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
char *v
char **vecs
khiter_t k
# these by-definition *must* be strings
vecs = <char **> malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if PyUnicode_Check(val) or PyString_Check(val):
v = util.get_c_string(val)
else:
v = util.get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_put_str(self.table, v, &ret)
self.table.vals[k] = i
free(vecs)
@cython.boundscheck(False)
def get_labels(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior, int64_t na_sentinel,
bint check_null=1):
cdef:
Py_ssize_t i, n = len(values)
int64_t[:] labels
int64_t[:] uindexer
Py_ssize_t idx, count = count_prior
int ret = 0
object val
char *v
char **vecs
khiter_t k
# these by-definition *must* be strings
labels = np.zeros(n, dtype=np.int64)
uindexer = np.empty(n, dtype=np.int64)
# pre-filter out missing
# and assign pointers
vecs = <char **> malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if PyUnicode_Check(val) or PyString_Check(val):
v = util.get_c_string(val)
vecs[i] = v
else:
labels[i] = na_sentinel
# compute
with nogil:
for i in range(n):
if labels[i] == na_sentinel:
continue
v = vecs[i]
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = <int64_t>idx
else:
k = kh_put_str(self.table, v, &ret)
self.table.vals[k] = count
uindexer[count] = i
labels[i] = <int64_t>count
count += 1
free(vecs)
# uniques
for i in range(count):
uniques.append(values[uindexer[i]])
return np.asarray(labels)
na_sentinel = object
cdef class PyObjectHashTable(HashTable):
def __init__(self, size_hint=1):
self.table = kh_init_pymap()
kh_resize_pymap(self.table, size_hint)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_pymap(self.table)
self.table = NULL
def __len__(self):
return self.table.size
def __contains__(self, object key):
cdef khiter_t k
hash(key)
if key != key or key is None:
key = na_sentinel
k = kh_get_pymap(self.table, <PyObject*>key)
return k != self.table.n_buckets
def sizeof(self, deep=False):
""" return the size of my table in bytes """
return self.table.n_buckets * (sizeof(PyObject *) + # keys
sizeof(size_t) + # vals
sizeof(uint32_t)) # flags
cpdef get_item(self, object val):
cdef khiter_t k
if val != val or val is None:
val = na_sentinel
k = kh_get_pymap(self.table, <PyObject*>val)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, object key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
char* buf
hash(key)
if key != key or key is None:
key = na_sentinel
k = kh_put_pymap(self.table, <PyObject*>key, &ret)
# self.table.keys[k] = key
if kh_exist_pymap(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
def map_locations(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
khiter_t k
for i in range(n):
val = values[i]
hash(val)
if val != val or val is None:
val = na_sentinel
k = kh_put_pymap(self.table, <PyObject*>val, &ret)
self.table.vals[k] = i
def lookup(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
khiter_t k
int64_t[:] locs = np.empty(n, dtype=np.int64)
for i in range(n):
val = values[i]
hash(val)
if val != val or val is None:
val = na_sentinel
k = kh_get_pymap(self.table, <PyObject*>val)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
return np.asarray(locs)
def unique(self, ndarray[object] values):
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
khiter_t k
ObjectVector uniques = ObjectVector()
bint seen_na = 0
for i in range(n):
val = values[i]
hash(val)
if not _checknan(val):
k = kh_get_pymap(self.table, <PyObject*>val)
if k == self.table.n_buckets:
kh_put_pymap(self.table, <PyObject*>val, &ret)
uniques.append(val)
elif not seen_na:
seen_na = 1
uniques.append(nan)
return uniques.to_array()
def get_labels(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior, int64_t na_sentinel,
bint check_null=True):
cdef:
Py_ssize_t i, n = len(values)
int64_t[:] labels
Py_ssize_t idx, count = count_prior
int ret = 0
object val
khiter_t k
labels = np.empty(n, dtype=np.int64)
for i in range(n):
val = values[i]
hash(val)
if check_null and val != val or val is None:
labels[i] = na_sentinel
continue
k = kh_get_pymap(self.table, <PyObject*>val)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = idx
else:
k = kh_put_pymap(self.table, <PyObject*>val, &ret)
self.table.vals[k] = count
uniques.append(val)
labels[i] = count
count += 1
return np.asarray(labels)