title | description |
---|---|
Metrics |
Core utility |
Metrics creates custom metrics asynchronously by logging metrics to standard output following Amazon CloudWatch Embedded Metric Format (EMF).
These metrics can be visualized through Amazon CloudWatch Console.
- Aggregate up to 100 metrics using a single CloudWatch EMF object (large JSON blob)
- Validate against common metric definitions mistakes (metric unit, values, max dimensions, max metrics, etc)
- Metrics are created asynchronously by CloudWatch service, no custom stacks needed
- Context manager to create a one off metric with a different dimension
If you're new to Amazon CloudWatch, there are two terminologies you must be aware of before using this utility:
- Namespace. It's the highest level container that will group multiple metrics from multiple services for a given application, for example
ServerlessEcommerce
. - Dimensions. Metrics metadata in key-value format. They help you slice and dice metrics visualization, for example
ColdStart
metric by Paymentservice
.
???+ tip All examples shared in this documentation are available within the project repository{target="_blank"}.
Metric has two global settings that will be used across all metrics emitted:
Setting | Description | Environment variable | Constructor parameter |
---|---|---|---|
Metric namespace | Logical container where all metrics will be placed e.g. ServerlessAirline |
POWERTOOLS_METRICS_NAMESPACE |
namespace |
Service | Optionally, sets service metric dimension across all metrics e.g. payment |
POWERTOOLS_SERVICE_NAME |
service |
???+ tip Use your application or main service as the metric namespace to easily group all metrics.
--8<-- "examples/metrics/sam/template.yaml"
???+ note For brevity, all code snippets in this page will rely on environment variables above being set.
This ensures we instantiate `metrics = Metrics()` over `metrics = Metrics(service="booking", namespace="ServerlessAirline")`, etc.
You can create metrics using add_metric
, and you can create dimensions for all your aggregate metrics using add_dimension
method.
???+ tip You can initialize Metrics in any other module too. It'll keep track of your aggregate metrics in memory to optimize costs (one blob instead of multiples).
=== "add_metrics.py"
```python hl_lines="10"
--8<-- "examples/metrics/src/add_metrics.py"
```
=== "add_dimension.py"
```python hl_lines="13"
--8<-- "examples/metrics/src/add_dimension.py"
```
???+ tip "Tip: Autocomplete Metric Units"
MetricUnit
enum facilitate finding a supported metric unit by CloudWatch. Alternatively, you can pass the value as a string if you already know them e.g. unit="Count"
.
???+ note "Note: Metrics overflow" CloudWatch EMF supports a max of 100 metrics per batch. Metrics utility will flush all metrics when adding the 100th metric. Subsequent metrics (101th+) will be aggregated into a new EMF object, for your convenience.
???+ warning "Warning: Do not create metrics or dimensions outside the handler" Metrics or dimensions added in the global scope will only be added during cold start. Disregard if you that's the intended behavior.
You can call add_metric()
with the same metric name multiple times. The values will be grouped together in a list.
=== "add_multi_value_metrics.py"
```python hl_lines="14-15"
--8<-- "examples/metrics/src/add_multi_value_metrics.py"
```
=== "add_multi_value_metrics_output.json"
```python hl_lines="15 24-26"
--8<-- "examples/metrics/src/add_multi_value_metrics_output.json"
```
You can use set_default_dimensions
method, or default_dimensions
parameter in log_metrics
decorator, to persist dimensions across Lambda invocations.
If you'd like to remove them at some point, you can use clear_default_dimensions
method.
=== "set_default_dimensions.py"
```python hl_lines="9"
--8<-- "examples/metrics/src/set_default_dimensions.py"
```
=== "set_default_dimensions_log_metrics.py"
```python hl_lines="9 13"
--8<-- "examples/metrics/src/set_default_dimensions_log_metrics.py"
```
As you finish adding all your metrics, you need to serialize and flush them to standard output. You can do that automatically with the log_metrics
decorator.
This decorator also validates, serializes, and flushes all your metrics. During metrics validation, if no metrics are provided then a warning will be logged, but no exception will be raised.
=== "add_metrics.py"
```python hl_lines="8"
--8<-- "examples/metrics/src/add_metrics.py"
```
=== "log_metrics_output.json"
```json hl_lines="6 9 14 21-23"
--8<-- "examples/metrics/src/log_metrics_output.json"
```
???+ tip "Tip: Metric validation"
If metrics are provided, and any of the following criteria are not met, SchemaValidationError
exception will be raised:
* Maximum of 29 user-defined dimensions
* Namespace is set, and no more than one
* Metric units must be [supported by CloudWatch](https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_MetricDatum.html)
If you want to ensure at least one metric is always emitted, you can pass raise_on_empty_metrics
to the log_metrics decorator:
--8<-- "examples/metrics/src/raise_on_empty_metrics.py"
???+ tip "Suppressing warning messages on empty metrics"
If you expect your function to execute without publishing metrics every time, you can suppress the warning with warnings.filterwarnings("ignore", "No metrics to publish*")
.
You can optionally capture cold start metrics with log_metrics
decorator via capture_cold_start_metric
param.
=== "capture_cold_start_metric.py"
```python hl_lines="7"
--8<-- "examples/metrics/src/capture_cold_start_metric.py"
```
=== "capture_cold_start_metric_output.json"
```json hl_lines="9 15 22 24-25"
--8<-- "examples/metrics/src/capture_cold_start_metric_output.json"
```
If it's a cold start invocation, this feature will:
- Create a separate EMF blob solely containing a metric named
ColdStart
- Add
function_name
andservice
dimensions
This has the advantage of keeping cold start metric separate from your application metrics, where you might have unrelated dimensions.
???+ info We do not emit 0 as a value for ColdStart metric for cost reasons. Let us know if you'd prefer a flag to override it.
You can add high-cardinality data as part of your Metrics log with add_metadata
method. This is useful when you want to search highly contextual information along with your metrics in your logs.
???+ info This will not be available during metrics visualization - Use dimensions for this purpose
=== "add_metadata.py"
```python hl_lines="14"
--8<-- "examples/metrics/src/add_metadata.py"
```
=== "add_metadata_output.json"
```json hl_lines="22"
--8<-- "examples/metrics/src/add_metadata_output.json"
```
CloudWatch EMF uses the same dimensions across all your metrics. Use single_metric
if you have a metric that should have different dimensions.
???+ info Generally, this would be an edge case since you pay for unique metric. Keep the following formula in mind:
**unique metric = (metric_name + dimension_name + dimension_value)**
=== "single_metric.py"
```python hl_lines="11"
--8<-- "examples/metrics/src/single_metric.py"
```
=== "single_metric_output.json"
```json hl_lines="15"
--8<-- "examples/metrics/src/single_metric_output.json"
```
If you prefer not to use log_metrics
because you might want to encapsulate additional logic when doing so, you can manually flush and clear metrics as follows:
???+ warning Metrics, dimensions and namespace validation still applies
--8<-- "examples/metrics/src/single_metric.py"
???+ tip Ignore this section, if:
* You are explicitly setting namespace/default dimension via `namespace` and `service` parameters
* You're not instantiating `Metrics` in the global namespace
For example, `Metrics(namespace="ServerlessAirline", service="booking")`
Make sure to set POWERTOOLS_METRICS_NAMESPACE
and POWERTOOLS_SERVICE_NAME
before running your tests to prevent failing on SchemaValidation
exception. You can set it before you run tests or via pytest plugins like dotenv.
--8<-- "examples/metrics/src/run_tests_env_var.sh"
Metrics
keep metrics in memory across multiple instances. If you need to test this behavior, you can use the following Pytest fixture to ensure metrics are reset incl. cold start:
--8<-- "examples/metrics/src/clear_metrics_in_tests.py"
You can read standard output and assert whether metrics have been flushed. Here's an example using pytest
with capsys
built-in fixture:
=== "assert_single_emf_blob.py"
```python hl_lines="6 9-10 23-34"
--8<-- "examples/metrics/src/assert_single_emf_blob.py"
```
=== "add_metrics.py"
```python
--8<-- "examples/metrics/src/add_metrics.py"
```
=== "assert_multiple_emf_blobs.py"
This will be needed when using `capture_cold_start_metric=True`, or when both `Metrics` and `single_metric` are used.
```python hl_lines="20-21 27"
--8<-- "examples/metrics/src/assert_multiple_emf_blobs.py"
```
=== "assert_multiple_emf_blobs_module.py"
```python
--8<-- "examples/metrics/src/assert_multiple_emf_blobs_module.py"
```
???+ tip For more elaborate assertions and comparisons, check out our functional testing for Metrics utility.