forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpivot.py
326 lines (274 loc) · 9.93 KB
/
pivot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# pylint: disable=E1103
from pandas import Series, DataFrame
from pandas.core.index import MultiIndex
from pandas.core.reshape import _unstack_multiple
from pandas.tools.merge import concat
from pandas.tools.util import cartesian_product
import pandas.core.common as com
import numpy as np
def pivot_table(data, values=None, rows=None, cols=None, aggfunc='mean',
fill_value=None, margins=False, dropna=True):
"""
Create a spreadsheet-style pivot table as a DataFrame. The levels in the
pivot table will be stored in MultiIndex objects (hierarchical indexes) on
the index and columns of the result DataFrame
Parameters
----------
data : DataFrame
values : column to aggregate, optional
rows : list of column names or arrays to group on
Keys to group on the x-axis of the pivot table
cols : list of column names or arrays to group on
Keys to group on the y-axis of the pivot table
aggfunc : function, default numpy.mean, or list of functions
If list of functions passed, the resulting pivot table will have
hierarchical columns whose top level are the function names (inferred
from the function objects themselves)
fill_value : scalar, default None
Value to replace missing values with
margins : boolean, default False
Add all row / columns (e.g. for subtotal / grand totals)
dropna : boolean, default True
Do not include columns whose entries are all NaN
Examples
--------
>>> df
A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7
>>> table = pivot_table(df, values='D', rows=['A', 'B'],
... cols=['C'], aggfunc=np.sum)
>>> table
small large
foo one 1 4
two 6 NaN
bar one 5 4
two 6 7
Returns
-------
table : DataFrame
"""
rows = _convert_by(rows)
cols = _convert_by(cols)
if isinstance(aggfunc, list):
pieces = []
keys = []
for func in aggfunc:
table = pivot_table(data, values=values, rows=rows, cols=cols,
fill_value=fill_value, aggfunc=func,
margins=margins)
pieces.append(table)
keys.append(func.__name__)
return concat(pieces, keys=keys, axis=1)
keys = rows + cols
values_passed = values is not None
if values_passed:
if isinstance(values, (list, tuple)):
values_multi = True
else:
values_multi = False
values = [values]
else:
values = list(data.columns.drop(keys))
if values_passed:
to_filter = []
for x in keys + values:
try:
if x in data:
to_filter.append(x)
except TypeError:
pass
if len(to_filter) < len(data.columns):
data = data[to_filter]
grouped = data.groupby(keys)
agged = grouped.agg(aggfunc)
table = agged
if table.index.nlevels > 1:
to_unstack = [agged.index.names[i]
for i in range(len(rows), len(keys))]
table = agged.unstack(to_unstack)
if not dropna:
try:
m = MultiIndex.from_arrays(cartesian_product(table.index.levels))
table = table.reindex_axis(m, axis=0)
except AttributeError:
pass # it's a single level
try:
m = MultiIndex.from_arrays(cartesian_product(table.columns.levels))
table = table.reindex_axis(m, axis=1)
except AttributeError:
pass # it's a single level or a series
if isinstance(table, DataFrame):
if isinstance(table.columns, MultiIndex):
table = table.sortlevel(axis=1)
else:
table = table.sort_index(axis=1)
if fill_value is not None:
table = table.fillna(value=fill_value, downcast=True)
if margins:
table = _add_margins(table, data, values, rows=rows,
cols=cols, aggfunc=aggfunc)
# discard the top level
if values_passed and not values_multi:
table = table[values[0]]
if len(rows) == 0 and len(cols) > 0:
table = table.T
return table
DataFrame.pivot_table = pivot_table
def _add_margins(table, data, values, rows=None, cols=None, aggfunc=np.mean):
grand_margin = {}
for k, v in data[values].iteritems():
try:
if isinstance(aggfunc, basestring):
grand_margin[k] = getattr(v, aggfunc)()
else:
grand_margin[k] = aggfunc(v)
except TypeError:
pass
if len(cols) > 0:
# need to "interleave" the margins
table_pieces = []
margin_keys = []
def _all_key(key):
return (key, 'All') + ('',) * (len(cols) - 1)
if len(rows) > 0:
margin = data[rows + values].groupby(rows).agg(aggfunc)
cat_axis = 1
for key, piece in table.groupby(level=0, axis=cat_axis):
all_key = _all_key(key)
piece[all_key] = margin[key]
table_pieces.append(piece)
margin_keys.append(all_key)
else:
margin = grand_margin
cat_axis = 0
for key, piece in table.groupby(level=0, axis=cat_axis):
all_key = _all_key(key)
table_pieces.append(piece)
table_pieces.append(Series(margin[key], index=[all_key]))
margin_keys.append(all_key)
result = concat(table_pieces, axis=cat_axis)
if len(rows) == 0:
return result
else:
result = table
margin_keys = table.columns
if len(cols) > 0:
row_margin = data[cols + values].groupby(cols).agg(aggfunc)
row_margin = row_margin.stack()
# slight hack
new_order = [len(cols)] + range(len(cols))
row_margin.index = row_margin.index.reorder_levels(new_order)
else:
row_margin = Series(np.nan, index=result.columns)
key = ('All',) + ('',) * (len(rows) - 1) if len(rows) > 1 else 'All'
row_margin = row_margin.reindex(result.columns)
# populate grand margin
for k in margin_keys:
if len(cols) > 0:
row_margin[k] = grand_margin[k[0]]
else:
row_margin[k] = grand_margin[k]
margin_dummy = DataFrame(row_margin, columns=[key]).T
row_names = result.index.names
result = result.append(margin_dummy)
result.index.names = row_names
return result
def _convert_by(by):
if by is None:
by = []
elif (np.isscalar(by) or isinstance(by, np.ndarray)
or hasattr(by, '__call__')):
by = [by]
else:
by = list(by)
return by
def crosstab(rows, cols, values=None, rownames=None, colnames=None,
aggfunc=None, margins=False, dropna=True):
"""
Compute a simple cross-tabulation of two (or more) factors. By default
computes a frequency table of the factors unless an array of values and an
aggregation function are passed
Parameters
----------
rows : array-like, Series, or list of arrays/Series
Values to group by in the rows
cols : array-like, Series, or list of arrays/Series
Values to group by in the columns
values : array-like, optional
Array of values to aggregate according to the factors
aggfunc : function, optional
If no values array is passed, computes a frequency table
rownames : sequence, default None
If passed, must match number of row arrays passed
colnames : sequence, default None
If passed, must match number of column arrays passed
margins : boolean, default False
Add row/column margins (subtotals)
dropna : boolean, default True
Do not include columns whose entries are all NaN
Notes
-----
Any Series passed will have their name attributes used unless row or column
names for the cross-tabulation are specified
Examples
--------
>>> a
array([foo, foo, foo, foo, bar, bar,
bar, bar, foo, foo, foo], dtype=object)
>>> b
array([one, one, one, two, one, one,
one, two, two, two, one], dtype=object)
>>> c
array([dull, dull, shiny, dull, dull, shiny,
shiny, dull, shiny, shiny, shiny], dtype=object)
>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
b one two
c dull shiny dull shiny
a
bar 1 2 1 0
foo 2 2 1 2
Returns
-------
crosstab : DataFrame
"""
rows = com._maybe_make_list(rows)
cols = com._maybe_make_list(cols)
rownames = _get_names(rows, rownames, prefix='row')
colnames = _get_names(cols, colnames, prefix='col')
data = {}
data.update(zip(rownames, rows))
data.update(zip(colnames, cols))
if values is None:
df = DataFrame(data)
df['__dummy__'] = 0
table = df.pivot_table('__dummy__', rows=rownames, cols=colnames,
aggfunc=len, margins=margins, dropna=dropna)
return table.fillna(0).astype(np.int64)
else:
data['__dummy__'] = values
df = DataFrame(data)
table = df.pivot_table('__dummy__', rows=rownames, cols=colnames,
aggfunc=aggfunc, margins=margins, dropna=dropna)
return table
def _get_names(arrs, names, prefix='row'):
if names is None:
names = []
for i, arr in enumerate(arrs):
if isinstance(arr, Series) and arr.name is not None:
names.append(arr.name)
else:
names.append('%s_%d' % (prefix, i))
else:
if not ((len(names) == len(arrs))):
raise AssertionError()
if not isinstance(names, list):
names = list(names)
return names