forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
706 lines (537 loc) · 21 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
from __future__ import division
# pylint: disable-msg=W0402
from datetime import datetime
import random
import string
import sys
from contextlib import contextmanager # contextlib is available since 2.5
from distutils.version import LooseVersion
from numpy.random import randn
import numpy as np
from pandas.core.common import isnull, _is_sequence
import pandas.core.index as index
import pandas.core.series as series
import pandas.core.frame as frame
import pandas.core.panel as panel
import pandas.core.panel4d as panel4d
from pandas import bdate_range
from pandas.tseries.index import DatetimeIndex
from pandas.tseries.period import PeriodIndex
Index = index.Index
MultiIndex = index.MultiIndex
Series = series.Series
DataFrame = frame.DataFrame
Panel = panel.Panel
Panel4D = panel4d.Panel4D
N = 30
K = 4
def rands(n):
choices = string.ascii_letters + string.digits
return ''.join([random.choice(choices) for _ in xrange(n)])
def randu(n):
choices = u"".join(map(unichr, range(1488, 1488 + 26))) + string.digits
return ''.join([random.choice(choices) for _ in xrange(n)])
#------------------------------------------------------------------------------
# Console debugging tools
def debug(f, *args, **kwargs):
from pdb import Pdb as OldPdb
try:
from IPython.core.debugger import Pdb
kw = dict(color_scheme='Linux')
except ImportError:
Pdb = OldPdb
kw = {}
pdb = Pdb(**kw)
return pdb.runcall(f, *args, **kwargs)
def pudebug(f, *args, **kwargs):
import pudb
return pudb.runcall(f, *args, **kwargs)
def set_trace():
from IPython.core.debugger import Pdb
try:
Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back)
except:
from pdb import Pdb as OldPdb
OldPdb().set_trace(sys._getframe().f_back)
#------------------------------------------------------------------------------
# Comparators
def equalContents(arr1, arr2):
"""Checks if the set of unique elements of arr1 and arr2 are equivalent.
"""
return frozenset(arr1) == frozenset(arr2)
def isiterable(obj):
return hasattr(obj, '__iter__')
def assert_almost_equal(a, b, check_less_precise = False):
if isinstance(a, dict) or isinstance(b, dict):
return assert_dict_equal(a, b)
if isinstance(a, basestring):
assert a == b, (a, b)
return True
if isiterable(a):
np.testing.assert_(isiterable(b))
assert(len(a) == len(b))
if np.array_equal(a, b):
return True
else:
for i in xrange(len(a)):
assert_almost_equal(a[i], b[i], check_less_precise)
return True
err_msg = lambda a, b: 'expected %.5f but got %.5f' % (a, b)
if isnull(a):
np.testing.assert_(isnull(b))
return
if isinstance(a, (bool, float, int, np.float32)):
decimal = 5
# deal with differing dtypes
if check_less_precise:
dtype_a = np.dtype(a)
dtype_b = np.dtype(b)
if dtype_a.kind == 'i' and dtype_b == 'i':
pass
if dtype_a.kind == 'f' and dtype_b == 'f':
if dtype_a.itemsize <= 4 and dtype_b.itemsize <= 4:
decimal = 3
if np.isinf(a):
assert np.isinf(b), err_msg(a, b)
# case for zero
elif abs(a) < 1e-5:
np.testing.assert_almost_equal(
a, b, decimal=decimal, err_msg=err_msg(a, b), verbose=False)
else:
np.testing.assert_almost_equal(
1, a / b, decimal=decimal, err_msg=err_msg(a, b), verbose=False)
else:
assert(a == b)
def is_sorted(seq):
return assert_almost_equal(seq, np.sort(np.array(seq)))
def assert_dict_equal(a, b, compare_keys=True):
a_keys = frozenset(a.keys())
b_keys = frozenset(b.keys())
if compare_keys:
assert(a_keys == b_keys)
for k in a_keys:
assert_almost_equal(a[k], b[k])
def assert_series_equal(left, right, check_dtype=True,
check_index_type=False,
check_index_freq=False,
check_series_type=False,
check_less_precise=False):
if check_series_type:
assert(type(left) == type(right))
assert_almost_equal(left.values, right.values, check_less_precise)
if check_dtype:
assert(left.dtype == right.dtype)
assert(left.index.equals(right.index))
if check_index_type:
assert(type(left.index) == type(right.index))
assert(left.index.dtype == right.index.dtype)
assert(left.index.inferred_type == right.index.inferred_type)
if check_index_freq:
assert(getattr(left, 'freqstr', None) ==
getattr(right, 'freqstr', None))
def assert_frame_equal(left, right, check_dtype=True,
check_index_type=False,
check_column_type=False,
check_frame_type=False,
check_less_precise=False):
if check_frame_type:
assert(type(left) == type(right))
assert(isinstance(left, DataFrame))
assert(isinstance(right, DataFrame))
assert(left.columns.equals(right.columns))
assert(left.index.equals(right.index))
for i, col in enumerate(left.columns):
assert(col in right)
lcol = left.icol(i)
rcol = right.icol(i)
assert_series_equal(lcol, rcol,
check_dtype=check_dtype,
check_index_type=check_index_type,
check_less_precise=check_less_precise)
if check_index_type:
assert(type(left.index) == type(right.index))
assert(left.index.dtype == right.index.dtype)
assert(left.index.inferred_type == right.index.inferred_type)
assert(left.index.names == right.index.names)
if check_column_type:
assert(type(left.columns) == type(right.columns))
assert(left.columns.dtype == right.columns.dtype)
assert(left.columns.inferred_type == right.columns.inferred_type)
assert(left.columns.names == right.columns.names)
def assert_panel_equal(left, right,
check_panel_type=False,
check_less_precise=False):
if check_panel_type:
assert(type(left) == type(right))
assert(left.items.equals(right.items))
assert(left.major_axis.equals(right.major_axis))
assert(left.minor_axis.equals(right.minor_axis))
for col, series in left.iterkv():
assert(col in right)
assert_frame_equal(series, right[col], check_less_precise=check_less_precise)
for col in right:
assert(col in left)
def assert_panel4d_equal(left, right,
check_less_precise=False):
assert(left.labels.equals(right.labels))
assert(left.items.equals(right.items))
assert(left.major_axis.equals(right.major_axis))
assert(left.minor_axis.equals(right.minor_axis))
for col, series in left.iterkv():
assert(col in right)
assert_panel_equal(series, right[col], check_less_precise=check_less_precise)
for col in right:
assert(col in left)
def assert_contains_all(iterable, dic):
for k in iterable:
assert(k in dic)
def getCols(k):
return string.ascii_uppercase[:k]
def makeStringIndex(k):
return Index([rands(10) for _ in xrange(k)])
def makeUnicodeIndex(k):
return Index([randu(10) for _ in xrange(k)])
def makeIntIndex(k):
return Index(range(k))
def makeFloatIndex(k):
values = sorted(np.random.random_sample(k)) - np.random.random_sample(1)
return Index(values * (10 ** np.random.randint(0, 9)))
def makeFloatSeries():
index = makeStringIndex(N)
return Series(randn(N), index=index)
def makeStringSeries():
index = makeStringIndex(N)
return Series(randn(N), index=index)
def makeObjectSeries():
dateIndex = makeDateIndex(N)
dateIndex = Index(dateIndex, dtype=object)
index = makeStringIndex(N)
return Series(dateIndex, index=index)
def getSeriesData():
index = makeStringIndex(N)
return dict((c, Series(randn(N), index=index)) for c in getCols(K))
def makeDataFrame():
data = getSeriesData()
return DataFrame(data)
def getArangeMat():
return np.arange(N * K).reshape((N, K))
def getMixedTypeDict():
index = Index(['a', 'b', 'c', 'd', 'e'])
data = {
'A': [0., 1., 2., 3., 4.],
'B': [0., 1., 0., 1., 0.],
'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'],
'D': bdate_range('1/1/2009', periods=5)
}
return index, data
def makeDateIndex(k):
dt = datetime(2000, 1, 1)
dr = bdate_range(dt, periods=k)
return DatetimeIndex(dr)
def makePeriodIndex(k):
dt = datetime(2000, 1, 1)
dr = PeriodIndex(start=dt, periods=k, freq='B')
return dr
def makeTimeSeries(nper=None):
if nper is None:
nper = N
return Series(randn(nper), index=makeDateIndex(nper))
def makePeriodSeries(nper=None):
if nper is None:
nper = N
return Series(randn(nper), index=makePeriodIndex(nper))
def getTimeSeriesData(nper=None):
return dict((c, makeTimeSeries(nper)) for c in getCols(K))
def makeTimeDataFrame(nper=None):
data = getTimeSeriesData(nper)
return DataFrame(data)
def getPeriodData():
return dict((c, makePeriodSeries()) for c in getCols(K))
def makePeriodFrame():
data = getPeriodData()
return DataFrame(data)
def makePanel(nper=None):
cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]]
data = dict((c, makeTimeDataFrame(nper)) for c in cols)
return Panel.fromDict(data)
def makePanel4D(nper=None):
return Panel4D(dict(l1=makePanel(nper), l2=makePanel(nper),
l3=makePanel(nper)))
def makeCustomIndex(nentries, nlevels, prefix='#', names=False, ndupe_l=None,
idx_type=None):
"""Create an index/multindex with given dimensions, levels, names, etc'
nentries - number of entries in index
nlevels - number of levels (> 1 produces multindex)
prefix - a string prefix for labels
names - (Optional), bool or list of strings. if True will use default names,
if false will use no names, if a list is given, the name of each level
in the index will be taken from the list.
ndupe_l - (Optional), list of ints, the number of rows for which the
label will repeated at the corresponding level, you can specify just
the first few, the rest will use the default ndupe_l of 1.
len(ndupe_l) <= nlevels.
idx_type - "i"/"f"/"s"/"u"/"dt".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s"/"u" creates a string/unicode index
"dt" create a datetime index.
if unspecified, string labels will be generated.
"""
from pandas.util.compat import Counter
if ndupe_l is None:
ndupe_l = [1] * nlevels
assert (_is_sequence(ndupe_l) and len(ndupe_l) <= nlevels)
assert (names is None or names is False
or names is True or len(names) is nlevels)
assert idx_type is None or \
(idx_type in ('i', 'f', 's', 'u', 'dt') and nlevels == 1)
if names is True:
# build default names
names = [prefix + str(i) for i in range(nlevels)]
if names is False:
# pass None to index constructor for no name
names = None
# make singelton case uniform
if isinstance(names, basestring) and nlevels == 1:
names = [names]
# specific 1D index type requested?
idx_func = dict(i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex,
u=makeUnicodeIndex, dt=makeDateIndex).get(idx_type)
if idx_func:
idx = idx_func(nentries)
# but we need to fill in the name
if names:
idx.name = names[0]
return idx
elif idx_type is not None:
raise ValueError('"%s" is not a legal value for `idx_type`, use '
'"i"/"f"/"s"/"u"/"dt".' % idx_type)
if len(ndupe_l) < nlevels:
ndupe_l.extend([1] * (nlevels - len(ndupe_l)))
assert len(ndupe_l) == nlevels
assert all([x > 0 for x in ndupe_l])
tuples = []
for i in range(nlevels):
def keyfunc(x):
import re
numeric_tuple = re.sub("[^\d_]_?","",x).split("_")
return map(int,numeric_tuple)
# build a list of lists to create the index from
div_factor = nentries // ndupe_l[i] + 1
cnt = Counter()
for j in range(div_factor):
label = prefix + '_l%d_g' % i + str(j)
cnt[label] = ndupe_l[i]
# cute Counter trick
result = list(sorted(cnt.elements(), key=keyfunc))[:nentries]
tuples.append(result)
tuples = zip(*tuples)
# convert tuples to index
if nentries == 1:
index = Index(tuples[0], name=names[0])
else:
index = MultiIndex.from_tuples(tuples, names=names)
return index
def makeCustomDataframe(nrows, ncols, c_idx_names=True, r_idx_names=True,
c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None,
c_ndupe_l=None, r_ndupe_l=None, dtype=None,
c_idx_type=None, r_idx_type=None):
"""
nrows, ncols - number of data rows/cols
c_idx_names, idx_names - False/True/list of strings, yields No names ,
default names or uses the provided names for the levels of the
corresponding index. You can provide a single string when
c_idx_nlevels ==1.
c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex
r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex
data_gen_f - a function f(row,col) which return the data value at that position,
the default generator used yields values of the form "RxCy" based on position.
c_ndupe_l, r_ndupe_l - list of integers, determines the number
of duplicates for each label at a given level of the corresponding index.
The default `None` value produces a multiplicity of 1 across
all levels, i.e. a unique index. Will accept a partial list of
length N < idx_nlevels, for just the first N levels. If ndupe
doesn't divide nrows/ncol, the last label might have lower multiplicity.
dtype - passed to the DataFrame constructor as is, in case you wish to
have more control in conjuncion with a custom `data_gen_f`
r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt".
If idx_type is not None, `idx_nlevels` must be 1.
"i"/"f" creates an integer/float index,
"s"/"u" creates a string/unicode index
"dt" create a datetime index.
if unspecified, string labels will be generated.
Examples:
# 5 row, 3 columns, default names on both, single index on both axis
>> makeCustomDataframe(5,3)
# make the data a random int between 1 and 100
>> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100))
# 2-level multiindex on rows with each label duplicated twice on first level,
# default names on both axis, single index on both axis
>> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2])
# DatetimeIndex on row, index with unicode labels on columns
# no names on either axis
>> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False,
r_idx_type="dt",c_idx_type="u")
# 4-level multindex on rows with names provided, 2-level multindex
# on columns with default labels and default names.
>> a=makeCustomDataframe(5,3,r_idx_nlevels=4,
r_idx_names=["FEE","FI","FO","FAM"],
c_idx_nlevels=2)
>> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
"""
assert c_idx_nlevels > 0
assert r_idx_nlevels > 0
assert r_idx_type is None or \
(r_idx_type in ('i', 'f', 's', 'u', 'dt') and r_idx_nlevels == 1)
assert c_idx_type is None or \
(c_idx_type in ('i', 'f', 's', 'u', 'dt') and c_idx_nlevels == 1)
columns = makeCustomIndex(ncols, nlevels=c_idx_nlevels, prefix='C',
names=c_idx_names, ndupe_l=c_ndupe_l,
idx_type=c_idx_type)
index = makeCustomIndex(nrows, nlevels=r_idx_nlevels, prefix='R',
names=r_idx_names, ndupe_l=r_ndupe_l,
idx_type=r_idx_type)
# by default, generate data based on location
if data_gen_f is None:
data_gen_f = lambda r, c: "R%dC%d" % (r, c)
data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)]
return DataFrame(data, index, columns, dtype=dtype)
def add_nans(panel):
I, J, N = panel.shape
for i, item in enumerate(panel.items):
dm = panel[item]
for j, col in enumerate(dm.columns):
dm[col][:i + j] = np.NaN
def add_nans_panel4d(panel4d):
for l, label in enumerate(panel4d.labels):
panel = panel4d[label]
add_nans(panel)
class TestSubDict(dict):
def __init__(self, *args, **kwargs):
dict.__init__(self, *args, **kwargs)
# Dependency checks. Copied this from Nipy/Nipype (Copyright of
# respective developers, license: BSD-3)
def package_check(pkg_name, version=None, app='pandas', checker=LooseVersion,
exc_failed_import=ImportError,
exc_failed_check=RuntimeError):
"""Check that the minimal version of the required package is installed.
Parameters
----------
pkg_name : string
Name of the required package.
version : string, optional
Minimal version number for required package.
app : string, optional
Application that is performing the check. For instance, the
name of the tutorial being executed that depends on specific
packages.
checker : object, optional
The class that will perform the version checking. Default is
distutils.version.LooseVersion.
exc_failed_import : Exception, optional
Class of the exception to be thrown if import failed.
exc_failed_check : Exception, optional
Class of the exception to be thrown if version check failed.
Examples
--------
package_check('numpy', '1.3')
package_check('networkx', '1.0', 'tutorial1')
"""
if app:
msg = '%s requires %s' % (app, pkg_name)
else:
msg = 'module requires %s' % pkg_name
if version:
msg += ' with version >= %s' % (version,)
try:
mod = __import__(pkg_name)
except ImportError:
raise exc_failed_import(msg)
if not version:
return
try:
have_version = mod.__version__
except AttributeError:
raise exc_failed_check('Cannot find version for %s' % pkg_name)
if checker(have_version) < checker(version):
raise exc_failed_check(msg)
def skip_if_no_package(*args, **kwargs):
"""Raise SkipTest if package_check fails
Parameters
----------
*args Positional parameters passed to `package_check`
*kwargs Keyword parameters passed to `package_check`
"""
from nose import SkipTest
package_check(exc_failed_import=SkipTest,
exc_failed_check=SkipTest,
*args, **kwargs)
#
# Additional tags decorators for nose
#
def network(t):
"""
Label a test as requiring network connection.
In some cases it is not possible to assume network presence (e.g. Debian
build hosts).
Parameters
----------
t : callable
The test requiring network connectivity.
Returns
-------
t : callable
The decorated test `t`.
Examples
--------
A test can be decorated as requiring network like this::
from pandas.util.testing import *
@network
def test_network(self):
print 'Fetch the stars from http://'
And use ``nosetests -a '!network'`` to exclude running tests requiring
network connectivity.
"""
t.network = True
return t
class SimpleMock(object):
"""
Poor man's mocking object
Note: only works for new-style classes, assumes __getattribute__ exists.
>>> a = type("Duck",(),{})
>>> a.attr1,a.attr2 ="fizz","buzz"
>>> b = SimpleMock(a,"attr1","bar")
>>> b.attr1 == "bar" and b.attr2 == "buzz"
True
>>> a.attr1 == "fizz" and a.attr2 == "buzz"
True
"""
def __init__(self, obj, *args, **kwds):
assert(len(args) % 2 == 0)
attrs = kwds.get("attrs", {})
for k, v in zip(args[::2], args[1::2]):
# dict comprehensions break 2.6
attrs[k] = v
self.attrs = attrs
self.obj = obj
def __getattribute__(self, name):
attrs = object.__getattribute__(self, "attrs")
obj = object.__getattribute__(self, "obj")
return attrs.get(name, type(obj).__getattribute__(obj, name))
@contextmanager
def stdin_encoding(encoding=None):
"""
Context manager for running bits of code while emulating an arbitrary
stdin encoding.
>>> import sys
>>> _encoding = sys.stdin.encoding
>>> with stdin_encoding('AES'): sys.stdin.encoding
'AES'
>>> sys.stdin.encoding==_encoding
True
"""
import sys
_stdin = sys.stdin
sys.stdin = SimpleMock(sys.stdin, "encoding", encoding)
yield
sys.stdin = _stdin