forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_init.py
344 lines (283 loc) · 11.4 KB
/
config_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
This module is imported from the pandas package __init__.py file
in order to ensure that the core.config options registered here will
be available as soon as the user loads the package. if register_option
is invoked inside specific modules, they will not be registered until that
module is imported, which may or may not be a problem.
If you need to make sure options are available even before a certain
module is imported, register them here rather then in the module.
"""
import pandas.core.config as cf
from pandas.core.config import (is_int, is_bool, is_text, is_float,
is_instance_factory, is_one_of_factory,
get_default_val)
from pandas.core.format import detect_console_encoding
#
# options from the "display" namespace
pc_precision_doc = """
: int
Floating point output precision (number of significant digits). This is
only a suggestion
"""
pc_colspace_doc = """
: int
Default space for DataFrame columns.
"""
pc_max_rows_doc = """
: int
This sets the maximum number of rows pandas should output when printing
out various output. For example, this value determines whether the repr()
for a dataframe prints out fully or just a summary repr.
'None' value means unlimited.
"""
pc_max_cols_doc = """
: int
max_rows and max_columns are used in __repr__() methods to decide if
to_string() or info() is used to render an object to a string. In case
python/IPython is running in a terminal this can be set to 0 and pandas
will correctly auto-detect the width the terminal and swap to a smaller
format in case all columns would not fit vertically. The IPython notebook,
IPython qtconsole, or IDLE do not run in a terminal and hence it is not
possible to do correct auto-detection.
'None' value means unlimited.
"""
pc_max_info_cols_doc = """
: int
max_info_columns is used in DataFrame.info method to decide if
per column information will be printed.
"""
pc_nb_repr_h_doc = """
: boolean
When True, IPython notebook will use html representation for
pandas objects (if it is available).
"""
pc_date_dayfirst_doc = """
: boolean
When True, prints and parses dates with the day first, eg 20/01/2005
"""
pc_date_yearfirst_doc = """
: boolean
When True, prints and parses dates with the year first, eg 2005/01/20
"""
pc_pprint_nest_depth = """
: int
Controls the number of nested levels to process when pretty-printing
"""
pc_multi_sparse_doc = """
: boolean
"sparsify" MultiIndex display (don't display repeated
elements in outer levels within groups)
"""
pc_encoding_doc = """
: str/unicode
Defaults to the detected encoding of the console.
Specifies the encoding to be used for strings returned by to_string,
these are generally strings meant to be displayed on the console.
"""
float_format_doc = """
: callable
The callable should accept a floating point number and return
a string with the desired format of the number. This is used
in some places like SeriesFormatter.
See core.format.EngFormatter for an example.
"""
max_colwidth_doc = """
: int
The maximum width in characters of a column in the repr of
a pandas data structure. When the column overflows, a "..."
placeholder is embedded in the output.
"""
colheader_justify_doc = """
: 'left'/'right'
Controls the justification of column headers. used by DataFrameFormatter.
"""
pc_expand_repr_doc = """
: boolean
Whether to print out the full DataFrame repr for wide DataFrames across
multiple lines, `max_columns` is still respected, but the output will
wrap-around across multiple "pages" if it's width exceeds `display.width`.
"""
pc_show_dimensions_doc = """
: boolean
Whether to print out dimensions at the end of DataFrame repr.
"""
pc_line_width_doc = """
: int
Deprecated.
"""
pc_line_width_deprecation_warning = """\
line_width has been deprecated, use display.width instead (currently both are
identical)
"""
pc_height_deprecation_warning = """\
height has been deprecated.
"""
pc_width_doc = """
: int
Width of the display in characters. In case python/IPython is running in
a terminal this can be set to None and pandas will correctly auto-detect
the width.
Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
terminal and hence it is not possible to correctly detect the width.
"""
pc_height_doc = """
: int
Deprecated.
"""
pc_chop_threshold_doc = """
: float or None
if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends.
"""
pc_max_seq_items = """
: int or None
when pretty-printing a long sequence, no more then `max_seq_items`
will be printed. If items are omitted, they will be denoted by the
addition of "..." to the resulting string.
If set to None, the number of items to be printed is unlimited.
"""
pc_max_info_rows_doc = """
: int or None
df.info() will usually show null-counts for each column.
For large frames this can be quite slow. max_info_rows and max_info_cols
limit this null check only to frames with smaller dimensions then specified.
"""
pc_large_repr_doc = """
: 'truncate'/'info'
For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
show a truncated table (the default from 0.13), or switch to the view from
df.info() (the behaviour in earlier versions of pandas).
"""
pc_mpl_style_doc = """
: bool
Setting this to 'default' will modify the rcParams used by matplotlib
to give plots a more pleasing visual style by default.
Setting this to None/False restores the values to their initial value.
"""
style_backup = dict()
def mpl_style_cb(key):
import sys
from pandas.tools.plotting import mpl_stylesheet
global style_backup
val = cf.get_option(key)
if 'matplotlib' not in sys.modules.keys():
if not(val): # starting up, we get reset to None
return val
raise Exception("matplotlib has not been imported. aborting")
import matplotlib.pyplot as plt
if val == 'default':
style_backup = dict([(k, plt.rcParams[k]) for k in mpl_stylesheet])
plt.rcParams.update(mpl_stylesheet)
elif not val:
if style_backup:
plt.rcParams.update(style_backup)
return val
with cf.config_prefix('display'):
cf.register_option('precision', 7, pc_precision_doc, validator=is_int)
cf.register_option('float_format', None, float_format_doc)
cf.register_option('column_space', 12, validator=is_int)
cf.register_option('max_info_rows', 1690785, pc_max_info_rows_doc,
validator=is_instance_factory((int, type(None))))
cf.register_option('max_rows', 60, pc_max_rows_doc,
validator=is_instance_factory([type(None), int]))
cf.register_option('max_colwidth', 50, max_colwidth_doc, validator=is_int)
cf.register_option('max_columns', 20, pc_max_cols_doc,
validator=is_instance_factory([type(None), int]))
cf.register_option('large_repr', 'truncate', pc_large_repr_doc,
validator=is_one_of_factory(['truncate', 'info']))
cf.register_option('max_info_columns', 100, pc_max_info_cols_doc,
validator=is_int)
cf.register_option('colheader_justify', 'right', colheader_justify_doc,
validator=is_text)
cf.register_option('notebook_repr_html', True, pc_nb_repr_h_doc,
validator=is_bool)
cf.register_option('date_dayfirst', False, pc_date_dayfirst_doc,
validator=is_bool)
cf.register_option('date_yearfirst', False, pc_date_yearfirst_doc,
validator=is_bool)
cf.register_option('pprint_nest_depth', 3, pc_pprint_nest_depth,
validator=is_int)
cf.register_option('multi_sparse', True, pc_multi_sparse_doc,
validator=is_bool)
cf.register_option('encoding', detect_console_encoding(), pc_encoding_doc,
validator=is_text)
cf.register_option('expand_frame_repr', True, pc_expand_repr_doc)
cf.register_option('show_dimensions', True, pc_show_dimensions_doc)
cf.register_option('chop_threshold', None, pc_chop_threshold_doc)
cf.register_option('max_seq_items', 100, pc_max_seq_items)
cf.register_option('mpl_style', None, pc_mpl_style_doc,
validator=is_one_of_factory([None, False, 'default']),
cb=mpl_style_cb)
cf.register_option('height', 60, pc_height_doc,
validator=is_instance_factory([type(None), int]))
cf.register_option('width', 80, pc_width_doc,
validator=is_instance_factory([type(None), int]))
# redirected to width, make defval identical
cf.register_option('line_width', get_default_val('display.width'),
pc_line_width_doc)
cf.deprecate_option('display.line_width',
msg=pc_line_width_deprecation_warning,
rkey='display.width')
cf.deprecate_option('display.height',
msg=pc_height_deprecation_warning,
rkey='display.max_rows')
tc_sim_interactive_doc = """
: boolean
Whether to simulate interactive mode for purposes of testing
"""
with cf.config_prefix('mode'):
cf.register_option('sim_interactive', False, tc_sim_interactive_doc)
use_inf_as_null_doc = """
: boolean
True means treat None, NaN, INF, -INF as null (old way),
False means None and NaN are null, but INF, -INF are not null
(new way).
"""
# We don't want to start importing everything at the global context level
# or we'll hit circular deps.
def use_inf_as_null_cb(key):
from pandas.core.common import _use_inf_as_null
_use_inf_as_null(key)
with cf.config_prefix('mode'):
cf.register_option('use_inf_as_null', False, use_inf_as_null_doc,
cb=use_inf_as_null_cb)
# user warnings
chained_assignment = """
: string
Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn
"""
with cf.config_prefix('mode'):
cf.register_option('chained_assignment', 'warn', chained_assignment,
validator=is_one_of_factory([None, 'warn', 'raise']))
# Set up the io.excel specific configuration.
writer_engine_doc = """
: string
The default Excel writer engine for '{ext}' files. Available options:
'{default}' (the default){others}.
"""
with cf.config_prefix('io.excel'):
# going forward, will be additional writers
for ext, options in [('xls', ['xlwt']),
('xlsm', ['openpyxl'])]:
default = options.pop(0)
if options:
options = " " + ", ".join(options)
else:
options = ""
doc = writer_engine_doc.format(ext=ext, default=default,
others=options)
cf.register_option(ext + '.writer', default, doc, validator=str)
def _register_xlsx(engine, other):
cf.register_option('xlsx.writer', engine,
writer_engine_doc.format(ext='xlsx',
default=engine,
others=", '%s'" % other),
validator=str)
try:
# better memory footprint
import xlsxwriter
_register_xlsx('xlsxwriter', 'openpyxl')
except ImportError:
# fallback
_register_xlsx('openpyxl', 'xlsxwriter')