forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_api.py
514 lines (403 loc) · 17.2 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# -*- coding: utf-8 -*-
from __future__ import print_function
import pytest
# pylint: disable-msg=W0612,E1101
from copy import deepcopy
import pydoc
from pandas.compat import range, lrange, long
from pandas import compat
from numpy.random import randn
import numpy as np
from pandas import (DataFrame, Series, date_range, timedelta_range,
Categorical, SparseDataFrame)
import pandas as pd
from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal)
import pandas.util.testing as tm
class SharedWithSparse(object):
"""
A collection of tests DataFrame and SparseDataFrame can share.
In generic tests on this class, use ``self._assert_frame_equal()`` and
``self._assert_series_equal()`` which are implemented in sub-classes
and dispatch correctly.
"""
def _assert_frame_equal(self, left, right):
"""Dispatch to frame class dependent assertion"""
raise NotImplementedError
def _assert_series_equal(self, left, right):
"""Dispatch to series class dependent assertion"""
raise NotImplementedError
def test_copy_index_name_checking(self, float_frame):
# don't want to be able to modify the index stored elsewhere after
# making a copy
for attr in ('index', 'columns'):
ind = getattr(float_frame, attr)
ind.name = None
cp = float_frame.copy()
getattr(cp, attr).name = 'foo'
assert getattr(float_frame, attr).name is None
def test_getitem_pop_assign_name(self, float_frame):
s = float_frame['A']
assert s.name == 'A'
s = float_frame.pop('A')
assert s.name == 'A'
s = float_frame.loc[:, 'B']
assert s.name == 'B'
s2 = s.loc[:]
assert s2.name == 'B'
def test_get_value(self, float_frame):
for idx in float_frame.index:
for col in float_frame.columns:
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = float_frame.get_value(idx, col)
expected = float_frame[col][idx]
tm.assert_almost_equal(result, expected)
def test_add_prefix_suffix(self, float_frame):
with_prefix = float_frame.add_prefix('foo#')
expected = pd.Index(['foo#%s' % c for c in float_frame.columns])
tm.assert_index_equal(with_prefix.columns, expected)
with_suffix = float_frame.add_suffix('#foo')
expected = pd.Index(['%s#foo' % c for c in float_frame.columns])
tm.assert_index_equal(with_suffix.columns, expected)
with_pct_prefix = float_frame.add_prefix('%')
expected = pd.Index(['%{}'.format(c) for c in float_frame.columns])
tm.assert_index_equal(with_pct_prefix.columns, expected)
with_pct_suffix = float_frame.add_suffix('%')
expected = pd.Index(['{}%'.format(c) for c in float_frame.columns])
tm.assert_index_equal(with_pct_suffix.columns, expected)
def test_get_axis(self, float_frame):
f = float_frame
assert f._get_axis_number(0) == 0
assert f._get_axis_number(1) == 1
assert f._get_axis_number('index') == 0
assert f._get_axis_number('rows') == 0
assert f._get_axis_number('columns') == 1
assert f._get_axis_name(0) == 'index'
assert f._get_axis_name(1) == 'columns'
assert f._get_axis_name('index') == 'index'
assert f._get_axis_name('rows') == 'index'
assert f._get_axis_name('columns') == 'columns'
assert f._get_axis(0) is f.index
assert f._get_axis(1) is f.columns
tm.assert_raises_regex(
ValueError, 'No axis named', f._get_axis_number, 2)
tm.assert_raises_regex(
ValueError, 'No axis.*foo', f._get_axis_name, 'foo')
tm.assert_raises_regex(
ValueError, 'No axis.*None', f._get_axis_name, None)
tm.assert_raises_regex(ValueError, 'No axis named',
f._get_axis_number, None)
def test_keys(self, float_frame):
getkeys = float_frame.keys
assert getkeys() is float_frame.columns
def test_column_contains_typeerror(self, float_frame):
try:
float_frame.columns in float_frame
except TypeError:
pass
def test_tab_completion(self):
# DataFrame whose columns are identifiers shall have them in __dir__.
df = pd.DataFrame([list('abcd'), list('efgh')], columns=list('ABCD'))
for key in list('ABCD'):
assert key in dir(df)
assert isinstance(df.__getitem__('A'), pd.Series)
# DataFrame whose first-level columns are identifiers shall have
# them in __dir__.
df = pd.DataFrame(
[list('abcd'), list('efgh')],
columns=pd.MultiIndex.from_tuples(list(zip('ABCD', 'EFGH'))))
for key in list('ABCD'):
assert key in dir(df)
for key in list('EFGH'):
assert key not in dir(df)
assert isinstance(df.__getitem__('A'), pd.DataFrame)
def test_not_hashable(self, empty_frame):
df = self.klass([1])
pytest.raises(TypeError, hash, df)
pytest.raises(TypeError, hash, empty_frame)
def test_new_empty_index(self):
df1 = self.klass(randn(0, 3))
df2 = self.klass(randn(0, 3))
df1.index.name = 'foo'
assert df2.index.name is None
def test_array_interface(self, float_frame):
with np.errstate(all='ignore'):
result = np.sqrt(float_frame)
assert isinstance(result, type(float_frame))
assert result.index is float_frame.index
assert result.columns is float_frame.columns
self._assert_frame_equal(result, float_frame.apply(np.sqrt))
def test_get_agg_axis(self, float_frame):
cols = float_frame._get_agg_axis(0)
assert cols is float_frame.columns
idx = float_frame._get_agg_axis(1)
assert idx is float_frame.index
pytest.raises(ValueError, float_frame._get_agg_axis, 2)
def test_nonzero(self, float_frame, float_string_frame, empty_frame):
assert empty_frame.empty
assert not float_frame.empty
assert not float_string_frame.empty
# corner case
df = DataFrame({'A': [1., 2., 3.],
'B': ['a', 'b', 'c']},
index=np.arange(3))
del df['A']
assert not df.empty
def test_iteritems(self):
df = self.klass([[1, 2, 3], [4, 5, 6]], columns=['a', 'a', 'b'])
for k, v in compat.iteritems(df):
assert isinstance(v, self.klass._constructor_sliced)
def test_items(self):
# issue #17213, #13918
cols = ['a', 'b', 'c']
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=cols)
for c, (k, v) in zip(cols, df.items()):
assert c == k
assert isinstance(v, Series)
assert (df[k] == v).all()
def test_iter(self, float_frame):
assert tm.equalContents(list(float_frame), float_frame.columns)
def test_iterrows(self, float_frame, float_string_frame):
for k, v in float_frame.iterrows():
exp = float_frame.loc[k]
self._assert_series_equal(v, exp)
for k, v in float_string_frame.iterrows():
exp = float_string_frame.loc[k]
self._assert_series_equal(v, exp)
def test_iterrows_iso8601(self):
# GH19671
if self.klass == SparseDataFrame:
pytest.xfail(reason='SparseBlock datetime type not implemented.')
s = self.klass(
{'non_iso8601': ['M1701', 'M1802', 'M1903', 'M2004'],
'iso8601': date_range('2000-01-01', periods=4, freq='M')})
for k, v in s.iterrows():
exp = s.loc[k]
self._assert_series_equal(v, exp)
def test_itertuples(self, float_frame):
for i, tup in enumerate(float_frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = float_frame.iloc[i, :].reset_index(drop=True)
self._assert_series_equal(s, expected)
df = self.klass({'floats': np.random.randn(5),
'ints': lrange(5)}, columns=['floats', 'ints'])
for tup in df.itertuples(index=False):
assert isinstance(tup[1], (int, long))
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[['a', 'a']]
assert (list(dfaa.itertuples()) ==
[(0, 1, 1), (1, 2, 2), (2, 3, 3)])
# repr with be int/long on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (repr(list(df.itertuples(name=None))) ==
'[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
tup = next(df.itertuples(name='TestName'))
assert tup._fields == ('Index', 'a', 'b')
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == 'TestName'
df.columns = ['def', 'return']
tup2 = next(df.itertuples(name='TestName'))
assert tup2 == (0, 1, 4)
assert tup2._fields == ('Index', '_1', '_2')
df3 = DataFrame({'f' + str(i): [i] for i in range(1024)})
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert not hasattr(tup3, '_fields')
assert isinstance(tup3, tuple)
def test_sequence_like_with_categorical(self):
# GH 7839
# make sure can iterate
df = DataFrame({"id": [1, 2, 3, 4, 5, 6],
"raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
df['grade'] = Categorical(df['raw_grade'])
# basic sequencing testing
result = list(df.grade.values)
expected = np.array(df.grade.values).tolist()
tm.assert_almost_equal(result, expected)
# iteration
for t in df.itertuples(index=False):
str(t)
for row, s in df.iterrows():
str(s)
for c, col in df.iteritems():
str(s)
def test_len(self, float_frame):
assert len(float_frame) == len(float_frame.index)
def test_values(self, float_frame, float_string_frame):
frame = float_frame
arr = frame.values
frame_cols = frame.columns
for i, row in enumerate(arr):
for j, value in enumerate(row):
col = frame_cols[j]
if np.isnan(value):
assert np.isnan(frame[col][i])
else:
assert value == frame[col][i]
# mixed type
arr = float_string_frame[['foo', 'A']].values
assert arr[0, 0] == 'bar'
df = self.klass({'complex': [1j, 2j, 3j], 'real': [1, 2, 3]})
arr = df.values
assert arr[0, 0] == 1j
# single block corner case
arr = float_frame[['A', 'B']].values
expected = float_frame.reindex(columns=['A', 'B']).values
assert_almost_equal(arr, expected)
def test_transpose(self, float_frame):
frame = float_frame
dft = frame.T
for idx, series in compat.iteritems(dft):
for col, value in compat.iteritems(series):
if np.isnan(value):
assert np.isnan(frame[col][idx])
else:
assert value == frame[col][idx]
# mixed type
index, data = tm.getMixedTypeDict()
mixed = self.klass(data, index=index)
mixed_T = mixed.T
for col, s in compat.iteritems(mixed_T):
assert s.dtype == np.object_
def test_swapaxes(self):
df = self.klass(np.random.randn(10, 5))
self._assert_frame_equal(df.T, df.swapaxes(0, 1))
self._assert_frame_equal(df.T, df.swapaxes(1, 0))
self._assert_frame_equal(df, df.swapaxes(0, 0))
pytest.raises(ValueError, df.swapaxes, 2, 5)
def test_axis_aliases(self, float_frame):
f = float_frame
# reg name
expected = f.sum(axis=0)
result = f.sum(axis='index')
assert_series_equal(result, expected)
expected = f.sum(axis=1)
result = f.sum(axis='columns')
assert_series_equal(result, expected)
def test_class_axis(self):
# https://github.com/pandas-dev/pandas/issues/18147
# no exception and no empty docstring
assert pydoc.getdoc(DataFrame.index)
assert pydoc.getdoc(DataFrame.columns)
def test_more_values(self, float_string_frame):
values = float_string_frame.values
assert values.shape[1] == len(float_string_frame.columns)
def test_repr_with_mi_nat(self, float_string_frame):
df = self.klass({'X': [1, 2]},
index=[[pd.NaT, pd.Timestamp('20130101')], ['a', 'b']])
res = repr(df)
exp = ' X\nNaT a 1\n2013-01-01 b 2'
assert res == exp
def test_iteritems_names(self, float_string_frame):
for k, v in compat.iteritems(float_string_frame):
assert v.name == k
def test_series_put_names(self, float_string_frame):
series = float_string_frame._series
for k, v in compat.iteritems(series):
assert v.name == k
def test_empty_nonzero(self):
df = self.klass([1, 2, 3])
assert not df.empty
df = self.klass(index=[1], columns=[1])
assert not df.empty
df = self.klass(index=['a', 'b'], columns=['c', 'd']).dropna()
assert df.empty
assert df.T.empty
empty_frames = [self.klass(),
self.klass(index=[1]),
self.klass(columns=[1]),
self.klass({1: []})]
for df in empty_frames:
assert df.empty
assert df.T.empty
def test_with_datetimelikes(self):
df = self.klass({'A': date_range('20130101', periods=10),
'B': timedelta_range('1 day', periods=10)})
t = df.T
result = t.get_dtype_counts()
expected = Series({'object': 10})
tm.assert_series_equal(result, expected)
class TestDataFrameMisc(SharedWithSparse):
klass = DataFrame
# SharedWithSparse tests use generic, klass-agnostic assertion
_assert_frame_equal = staticmethod(assert_frame_equal)
_assert_series_equal = staticmethod(assert_series_equal)
def test_values(self, float_frame):
float_frame.values[:, 0] = 5.
assert (float_frame.values[:, 0] == 5).all()
def test_as_matrix_deprecated(self, float_frame):
# GH18458
with tm.assert_produces_warning(FutureWarning):
cols = float_frame.columns.tolist()
result = float_frame.as_matrix(columns=cols)
expected = float_frame.values
tm.assert_numpy_array_equal(result, expected)
def test_deepcopy(self, float_frame):
cp = deepcopy(float_frame)
series = cp['A']
series[:] = 10
for idx, value in compat.iteritems(series):
assert float_frame['A'][idx] != value
def test_transpose_get_view(self, float_frame):
dft = float_frame.T
dft.values[:, 5:10] = 5
assert (float_frame.values[5:10] == 5).all()
def test_inplace_return_self(self):
# re #1893
data = DataFrame({'a': ['foo', 'bar', 'baz', 'qux'],
'b': [0, 0, 1, 1],
'c': [1, 2, 3, 4]})
def _check_f(base, f):
result = f(base)
assert result is None
# -----DataFrame-----
# set_index
f = lambda x: x.set_index('a', inplace=True)
_check_f(data.copy(), f)
# reset_index
f = lambda x: x.reset_index(inplace=True)
_check_f(data.set_index('a'), f)
# drop_duplicates
f = lambda x: x.drop_duplicates(inplace=True)
_check_f(data.copy(), f)
# sort
f = lambda x: x.sort_values('b', inplace=True)
_check_f(data.copy(), f)
# sort_index
f = lambda x: x.sort_index(inplace=True)
_check_f(data.copy(), f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(data.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(data.copy(), f)
# rename
f = lambda x: x.rename({1: 'foo'}, inplace=True)
_check_f(data.copy(), f)
# -----Series-----
d = data.copy()['c']
# reset_index
f = lambda x: x.reset_index(inplace=True, drop=True)
_check_f(data.set_index('a')['c'], f)
# fillna
f = lambda x: x.fillna(0, inplace=True)
_check_f(d.copy(), f)
# replace
f = lambda x: x.replace(1, 0, inplace=True)
_check_f(d.copy(), f)
# rename
f = lambda x: x.rename({1: 'foo'}, inplace=True)
_check_f(d.copy(), f)
def test_tab_complete_warning(self, ip):
# https://github.com/pandas-dev/pandas/issues/16409
pytest.importorskip('IPython', minversion="6.0.0")
from IPython.core.completer import provisionalcompleter
code = "import pandas as pd; df = pd.DataFrame()"
ip.run_code(code)
with tm.assert_produces_warning(None):
with provisionalcompleter('ignore'):
list(ip.Completer.completions('df.', 1))