forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray_.py
278 lines (218 loc) · 9.24 KB
/
array_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from typing import Optional, Sequence, Union
import numpy as np
from pandas._libs import lib, tslibs
from pandas.core.dtypes.common import (
is_datetime64_ns_dtype, is_extension_array_dtype, is_timedelta64_ns_dtype)
from pandas.core.dtypes.dtypes import ExtensionDtype, registry
from pandas.core.dtypes.generic import ABCExtensionArray
from pandas import compat
def array(data: Sequence[object],
dtype: Optional[Union[str, np.dtype, ExtensionDtype]] = None,
copy: bool = True,
) -> ABCExtensionArray:
"""
Create an array.
.. versionadded:: 0.24.0
Parameters
----------
data : Sequence of objects
The scalars inside `data` should be instances of the
scalar type for `dtype`. It's expected that `data`
represents a 1-dimensional array of data.
When `data` is an Index or Series, the underlying array
will be extracted from `data`.
dtype : str, np.dtype, or ExtensionDtype, optional
The dtype to use for the array. This may be a NumPy
dtype or an extension type registered with pandas using
:meth:`pandas.api.extensions.register_extension_dtype`.
If not specified, there are two possibilities:
1. When `data` is a :class:`Series`, :class:`Index`, or
:class:`ExtensionArray`, the `dtype` will be taken
from the data.
2. Otherwise, pandas will attempt to infer the `dtype`
from the data.
Note that when `data` is a NumPy array, ``data.dtype`` is
*not* used for inferring the array type. This is because
NumPy cannot represent all the types of data that can be
held in extension arrays.
Currently, pandas will infer an extension dtype for sequences of
============================== =====================================
Scalar Type Array Type
============================== =====================================
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
============================== =====================================
For all other cases, NumPy's usual inference rules will be used.
copy : bool, default True
Whether to copy the data, even if not necessary. Depending
on the type of `data`, creating the new array may require
copying data, even if ``copy=False``.
Returns
-------
ExtensionArray
The newly created array.
Raises
------
ValueError
When `data` is not 1-dimensional.
See Also
--------
numpy.array : Construct a NumPy array.
Series : Construct a pandas Series.
Index : Construct a pandas Index.
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
Series.array : Extract the array stored within a Series.
Notes
-----
Omitting the `dtype` argument means pandas will attempt to infer the
best array type from the values in the data. As new array types are
added by pandas and 3rd party libraries, the "best" array type may
change. We recommend specifying `dtype` to ensure that
1. the correct array type for the data is returned
2. the returned array type doesn't change as new extension types
are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned
array matters, we recommend specifying the `dtype` as a concrete object
rather than a string alias or allowing it to be inferred. For example,
a future version of pandas or a 3rd-party library may include a
dedicated ExtensionArray for string data. In this event, the following
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
array.
>>> pd.array(['a', 'b'], dtype=str)
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string
data. If you really need the new array to be backed by a NumPy array,
specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Or use the dedicated constructor for the array you're expecting, and
wrap that in a PandasArray
>>> pd.array(np.array(['a', 'b'], dtype='<U1'))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
* :class:`arrays.DatetimeArray`
* :class:`arrays.TimedeltaArray`
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
rather than a ``PandasArray``. This is for symmetry with the case of
timezone-aware data, which NumPy does not natively support.
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
<DatetimeArray>
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
<TimedeltaArray>
['01:00:00', '02:00:00']
Length: 2, dtype: timedelta64[ns]
Examples
--------
If a dtype is not specified, `data` is passed through to
:meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned.
>>> pd.array([1, 2])
<PandasArray>
[1, 2]
Length: 2, dtype: int64
Or the NumPy dtype can be specified
>>> pd.array([1, 2], dtype=np.dtype("int32"))
<PandasArray>
[1, 2]
Length: 2, dtype: int32
You can use the string alias for `dtype`
>>> pd.array(['a', 'b', 'a'], dtype='category')
[a, b, a]
Categories (2, object): [a, b]
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'],
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
[a, b, a]
Categories (3, object): [a < b < c]
Because omitting the `dtype` passes the data through to NumPy,
a mixture of valid integers and NA will return a floating-point
NumPy array.
>>> pd.array([1, 2, np.nan])
<PandasArray>
[1.0, 2.0, nan]
Length: 3, dtype: float64
To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify
the dtype:
>>> pd.array([1, 2, np.nan], dtype='Int64')
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
Pandas will infer an ExtensionArray for some types of data:
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
<PeriodArray>
['2000-01-01', '2000-01-01']
Length: 2, dtype: period[D]
`data` must be 1-dimensional. A ValueError is raised when the input
has the wrong dimensionality.
>>> pd.array(1)
Traceback (most recent call last):
...
ValueError: Cannot pass scalar '1' to 'pandas.array'.
"""
from pandas.core.arrays import (
period_array, ExtensionArray, IntervalArray, PandasArray,
DatetimeArray,
TimedeltaArray,
)
from pandas.core.internals.arrays import extract_array
if lib.is_scalar(data):
msg = (
"Cannot pass scalar '{}' to 'pandas.array'."
)
raise ValueError(msg.format(data))
data = extract_array(data, extract_numpy=True)
if dtype is None and isinstance(data, ExtensionArray):
dtype = data.dtype
# this returns None for not-found dtypes.
if isinstance(dtype, compat.string_types):
dtype = registry.find(dtype) or dtype
if is_extension_array_dtype(dtype):
cls = dtype.construct_array_type()
return cls._from_sequence(data, dtype=dtype, copy=copy)
if dtype is None:
inferred_dtype = lib.infer_dtype(data, skipna=False)
if inferred_dtype == 'period':
try:
return period_array(data, copy=copy)
except tslibs.IncompatibleFrequency:
# We may have a mixture of frequencies.
# We choose to return an ndarray, rather than raising.
pass
elif inferred_dtype == 'interval':
try:
return IntervalArray(data, copy=copy)
except ValueError:
# We may have a mixture of `closed` here.
# We choose to return an ndarray, rather than raising.
pass
elif inferred_dtype.startswith('datetime'):
# datetime, datetime64
try:
return DatetimeArray._from_sequence(data, copy=copy)
except ValueError:
# Mixture of timezones, fall back to PandasArray
pass
elif inferred_dtype.startswith('timedelta'):
# timedelta, timedelta64
return TimedeltaArray._from_sequence(data, copy=copy)
# TODO(BooleanArray): handle this type
# Pandas overrides NumPy for
# 1. datetime64[ns]
# 2. timedelta64[ns]
# so that a DatetimeArray is returned.
if is_datetime64_ns_dtype(dtype):
return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
elif is_timedelta64_ns_dtype(dtype):
return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)
result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
return result