forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
526 lines (408 loc) · 15.7 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""
Base and utility classes for pandas objects.
"""
import datetime
from pandas import compat
import numpy as np
from pandas.core import common as com
import pandas.core.nanops as nanops
import pandas.tslib as tslib
import pandas.lib as lib
from pandas.util.decorators import Appender, cache_readonly
_shared_docs = dict()
_indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='')
class StringMixin(object):
"""implements string methods so long as object defines a `__unicode__`
method.
Handles Python2/3 compatibility transparently.
"""
# side note - this could be made into a metaclass if more than one
# object needs
#----------------------------------------------------------------------
# Formatting
def __unicode__(self):
raise NotImplementedError
def __str__(self):
"""
Return a string representation for a particular Object
Invoked by str(df) in both py2/py3.
Yields Bytestring in Py2, Unicode String in py3.
"""
if compat.PY3:
return self.__unicode__()
return self.__bytes__()
def __bytes__(self):
"""
Return a string representation for a particular object.
Invoked by bytes(obj) in py3 only.
Yields a bytestring in both py2/py3.
"""
from pandas.core.config import get_option
encoding = get_option("display.encoding")
return self.__unicode__().encode(encoding, 'replace')
def __repr__(self):
"""
Return a string representation for a particular object.
Yields Bytestring in Py2, Unicode String in py3.
"""
return str(self)
class PandasObject(StringMixin):
"""baseclass for various pandas objects"""
@property
def _constructor(self):
"""class constructor (for this class it's just `__class__`"""
return self.__class__
def __unicode__(self):
"""
Return a string representation for a particular object.
Invoked by unicode(obj) in py2 only. Yields a Unicode String in both
py2/py3.
"""
# Should be overwritten by base classes
return object.__repr__(self)
def _local_dir(self):
""" provide addtional __dir__ for this object """
return []
def __dir__(self):
"""
Provide method name lookup and completion
Only provide 'public' methods
"""
return list(sorted(list(set(dir(type(self)) + self._local_dir()))))
def _reset_cache(self, key=None):
"""
Reset cached properties. If ``key`` is passed, only clears that key.
"""
if getattr(self, '_cache', None) is None:
return
if key is None:
self._cache.clear()
else:
self._cache.pop(key, None)
class PandasDelegate(PandasObject):
""" an abstract base class for delegating methods/properties """
def _delegate_property_get(self, name, *args, **kwargs):
raise TypeError("You cannot access the property {name}".format(name=name))
def _delegate_property_set(self, name, value, *args, **kwargs):
raise TypeError("The property {name} cannot be set".format(name=name))
def _delegate_method(self, name, *args, **kwargs):
raise TypeError("You cannot call method {name}".format(name=name))
@classmethod
def _add_delegate_accessors(cls, delegate, accessors, typ):
"""
add accessors to cls from the delegate class
Parameters
----------
cls : the class to add the methods/properties to
delegate : the class to get methods/properties & doc-strings
acccessors : string list of accessors to add
typ : 'property' or 'method'
"""
def _create_delegator_property(name):
def _getter(self):
return self._delegate_property_get(name)
def _setter(self, new_values):
return self._delegate_property_set(name, new_values)
_getter.__name__ = name
_setter.__name__ = name
return property(fget=_getter, fset=_setter, doc=getattr(delegate,name).__doc__)
def _create_delegator_method(name):
def f(self, *args, **kwargs):
return self._delegate_method(name, *args, **kwargs)
f.__name__ = name
f.__doc__ = getattr(delegate,name).__doc__
return f
for name in accessors:
if typ == 'property':
f = _create_delegator_property(name)
else:
f = _create_delegator_method(name)
# don't overwrite existing methods/properties
if not hasattr(cls, name):
setattr(cls,name,f)
class FrozenList(PandasObject, list):
"""
Container that doesn't allow setting item *but*
because it's technically non-hashable, will be used
for lookups, appropriately, etc.
"""
# Sidenote: This has to be of type list, otherwise it messes up PyTables
# typechecks
def __add__(self, other):
if isinstance(other, tuple):
other = list(other)
return self.__class__(super(FrozenList, self).__add__(other))
__iadd__ = __add__
# Python 2 compat
def __getslice__(self, i, j):
return self.__class__(super(FrozenList, self).__getslice__(i, j))
def __getitem__(self, n):
# Python 3 compat
if isinstance(n, slice):
return self.__class__(super(FrozenList, self).__getitem__(n))
return super(FrozenList, self).__getitem__(n)
def __radd__(self, other):
if isinstance(other, tuple):
other = list(other)
return self.__class__(other + list(self))
def __eq__(self, other):
if isinstance(other, (tuple, FrozenList)):
other = list(other)
return super(FrozenList, self).__eq__(other)
__req__ = __eq__
def __mul__(self, other):
return self.__class__(super(FrozenList, self).__mul__(other))
__imul__ = __mul__
def __reduce__(self):
return self.__class__, (list(self),)
def __hash__(self):
return hash(tuple(self))
def _disabled(self, *args, **kwargs):
"""This method will not function because object is immutable."""
raise TypeError("'%s' does not support mutable operations." %
self.__class__.__name__)
def __unicode__(self):
from pandas.core.common import pprint_thing
return pprint_thing(self, quote_strings=True,
escape_chars=('\t', '\r', '\n'))
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__,
str(self))
__setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
pop = append = extend = remove = sort = insert = _disabled
class FrozenNDArray(PandasObject, np.ndarray):
# no __array_finalize__ for now because no metadata
def __new__(cls, data, dtype=None, copy=False):
if copy is None:
copy = not isinstance(data, FrozenNDArray)
res = np.array(data, dtype=dtype, copy=copy).view(cls)
return res
def _disabled(self, *args, **kwargs):
"""This method will not function because object is immutable."""
raise TypeError("'%s' does not support mutable operations." %
self.__class__)
__setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
put = itemset = fill = _disabled
def _shallow_copy(self):
return self.view()
def values(self):
"""returns *copy* of underlying array"""
arr = self.view(np.ndarray).copy()
return arr
def __unicode__(self):
"""
Return a string representation for this object.
Invoked by unicode(df) in py2 only. Yields a Unicode String in both
py2/py3.
"""
prepr = com.pprint_thing(self, escape_chars=('\t', '\r', '\n'),
quote_strings=True)
return "%s(%s, dtype='%s')" % (type(self).__name__, prepr, self.dtype)
class IndexOpsMixin(object):
""" common ops mixin to support a unified inteface / docs for Series / Index """
# ndarray compatibility
__array_priority__ = 1000
def transpose(self):
""" return the transpose, which is by definition self """
return self
T = property(transpose, doc="return the transpose, which is by definition self")
@property
def shape(self):
""" return a tuple of the shape of the underlying data """
return self.values.shape
@property
def ndim(self):
""" return the number of dimensions of the underlying data, by definition 1 """
return 1
def item(self):
""" return the first element of the underlying data as a python scalar """
try:
return self.values.item()
except IndexError:
# copy numpy's message here because Py26 raises an IndexError
raise ValueError('can only convert an array of size 1 to a '
'Python scalar')
@property
def data(self):
""" return the data pointer of the underlying data """
return self.values.data
@property
def itemsize(self):
""" return the size of the dtype of the item of the underlying data """
return self.values.itemsize
@property
def nbytes(self):
""" return the number of bytes in the underlying data """
return self.values.nbytes
@property
def strides(self):
""" return the strides of the underlying data """
return self.values.strides
@property
def size(self):
""" return the number of elements in the underlying data """
return self.values.size
@property
def flags(self):
""" return the ndarray.flags for the underlying data """
return self.values.flags
@property
def base(self):
""" return the base object if the memory of the underlying data is shared """
return self.values.base
def max(self):
""" The maximum value of the object """
return nanops.nanmax(self.values)
def argmax(self, axis=None):
"""
return a ndarray of the maximum argument indexer
See also
--------
numpy.ndarray.argmax
"""
return nanops.nanargmax(self.values)
def min(self):
""" The minimum value of the object """
return nanops.nanmin(self.values)
def argmin(self, axis=None):
"""
return a ndarray of the minimum argument indexer
See also
--------
numpy.ndarray.argmin
"""
return nanops.nanargmin(self.values)
def hasnans(self):
""" return if I have any nans; enables various perf speedups """
return com.isnull(self).any()
def value_counts(self, normalize=False, sort=True, ascending=False,
bins=None, dropna=True):
"""
Returns object containing counts of unique values.
The resulting object will be in descending order so that the
first element is the most frequently-occurring element.
Excludes NA values by default.
Parameters
----------
normalize : boolean, default False
If True then the object returned will contain the relative
frequencies of the unique values.
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
bins : integer, optional
Rather than count values, group them into half-open bins,
a convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN.
Returns
-------
counts : Series
"""
from pandas.core.algorithms import value_counts
from pandas.tseries.api import DatetimeIndex, PeriodIndex
result = value_counts(self, sort=sort, ascending=ascending,
normalize=normalize, bins=bins, dropna=dropna)
if isinstance(self, PeriodIndex):
# preserve freq
result.index = self._simple_new(result.index.values, self.name,
freq=self.freq)
elif isinstance(self, DatetimeIndex):
result.index = self._simple_new(result.index.values, self.name,
tz=getattr(self, 'tz', None))
return result
def unique(self):
"""
Return array of unique values in the object. Significantly faster than
numpy.unique. Includes NA values.
Returns
-------
uniques : ndarray
"""
from pandas.core.nanops import unique1d
values = self.values
if hasattr(values,'unique'):
return values.unique()
return unique1d(values)
def nunique(self, dropna=True):
"""
Return number of unique elements in the object.
Excludes NA values by default.
Parameters
----------
dropna : boolean, default True
Don't include NaN in the count.
Returns
-------
nunique : int
"""
result = self.unique()
if dropna:
return len(result) - np.isnan(np.sum(result))
return len(result)
def factorize(self, sort=False, na_sentinel=-1):
"""
Encode the object as an enumerated type or categorical variable
Parameters
----------
sort : boolean, default False
Sort by values
na_sentinel: int, default -1
Value to mark "not found"
Returns
-------
labels : the indexer to the original array
uniques : the unique Index
"""
from pandas.core.algorithms import factorize
return factorize(self, sort=sort, na_sentinel=na_sentinel)
def searchsorted(self, key, side='left'):
""" np.ndarray searchsorted compat """
### FIXME in GH7447
#### needs coercion on the key (DatetimeIndex does alreay)
#### needs tests/doc-string
return self.values.searchsorted(key, side=side)
_shared_docs['drop_duplicates'] = (
"""Return %(klass)s with duplicate values removed
Parameters
----------
take_last : boolean, default False
Take the last observed index in a group. Default first
%(inplace)s
Returns
-------
deduplicated : %(klass)s
""")
@Appender(_shared_docs['drop_duplicates'] % _indexops_doc_kwargs)
def drop_duplicates(self, take_last=False, inplace=False):
duplicated = self.duplicated(take_last=take_last)
result = self[~(duplicated.values).astype(bool)]
if inplace:
return self._update_inplace(result)
else:
return result
_shared_docs['duplicated'] = (
"""Return boolean %(klass)s denoting duplicate values
Parameters
----------
take_last : boolean, default False
Take the last observed index in a group. Default first
Returns
-------
duplicated : %(klass)s
""")
@Appender(_shared_docs['duplicated'] % _indexops_doc_kwargs)
def duplicated(self, take_last=False):
keys = com._ensure_object(self.values)
duplicated = lib.duplicated(keys, take_last=take_last)
try:
return self._constructor(duplicated,
index=self.index).__finalize__(self)
except AttributeError:
from pandas.core.index import Index
return Index(duplicated)
#----------------------------------------------------------------------
# abstracts
def _update_inplace(self, result, **kwargs):
raise NotImplementedError