forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhtml.py
902 lines (710 loc) · 27.4 KB
/
html.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
""":mod:`pandas.io.html` is a module containing functionality for dealing with
HTML IO.
"""
import os
import re
import numbers
import collections
from distutils.version import LooseVersion
import numpy as np
from pandas.io.common import (EmptyDataError, _is_url, urlopen,
parse_url, _validate_header_arg)
from pandas.io.parsers import TextParser
from pandas.compat import (lrange, lmap, u, string_types, iteritems,
raise_with_traceback, binary_type)
from pandas.core import common as com
from pandas import Series
from pandas.core.common import AbstractMethodError
from pandas.formats.printing import pprint_thing
_IMPORTS = False
_HAS_BS4 = False
_HAS_LXML = False
_HAS_HTML5LIB = False
def _importers():
# import things we need
# but make this done on a first use basis
global _IMPORTS
if _IMPORTS:
return
_IMPORTS = True
global _HAS_BS4, _HAS_LXML, _HAS_HTML5LIB
try:
import bs4 # noqa
_HAS_BS4 = True
except ImportError:
pass
try:
import lxml # noqa
_HAS_LXML = True
except ImportError:
pass
try:
import html5lib # noqa
_HAS_HTML5LIB = True
except ImportError:
pass
#############
# READ HTML #
#############
_RE_WHITESPACE = re.compile(r'[\r\n]+|\s{2,}')
char_types = string_types + (binary_type,)
def _remove_whitespace(s, regex=_RE_WHITESPACE):
"""Replace extra whitespace inside of a string with a single space.
Parameters
----------
s : str or unicode
The string from which to remove extra whitespace.
regex : regex
The regular expression to use to remove extra whitespace.
Returns
-------
subd : str or unicode
`s` with all extra whitespace replaced with a single space.
"""
return regex.sub(' ', s.strip())
def _get_skiprows(skiprows):
"""Get an iterator given an integer, slice or container.
Parameters
----------
skiprows : int, slice, container
The iterator to use to skip rows; can also be a slice.
Raises
------
TypeError
* If `skiprows` is not a slice, integer, or Container
Returns
-------
it : iterable
A proper iterator to use to skip rows of a DataFrame.
"""
if isinstance(skiprows, slice):
return lrange(skiprows.start or 0, skiprows.stop, skiprows.step or 1)
elif isinstance(skiprows, numbers.Integral) or com.is_list_like(skiprows):
return skiprows
elif skiprows is None:
return 0
raise TypeError('%r is not a valid type for skipping rows' %
type(skiprows).__name__)
def _read(obj):
"""Try to read from a url, file or string.
Parameters
----------
obj : str, unicode, or file-like
Returns
-------
raw_text : str
"""
if _is_url(obj):
with urlopen(obj) as url:
text = url.read()
elif hasattr(obj, 'read'):
text = obj.read()
elif isinstance(obj, char_types):
text = obj
try:
if os.path.isfile(text):
with open(text, 'rb') as f:
return f.read()
except (TypeError, ValueError):
pass
else:
raise TypeError("Cannot read object of type %r" % type(obj).__name__)
return text
class _HtmlFrameParser(object):
"""Base class for parsers that parse HTML into DataFrames.
Parameters
----------
io : str or file-like
This can be either a string of raw HTML, a valid URL using the HTTP,
FTP, or FILE protocols or a file-like object.
match : str or regex
The text to match in the document.
attrs : dict
List of HTML <table> element attributes to match.
Attributes
----------
io : str or file-like
raw HTML, URL, or file-like object
match : regex
The text to match in the raw HTML
attrs : dict-like
A dictionary of valid table attributes to use to search for table
elements.
Notes
-----
To subclass this class effectively you must override the following methods:
* :func:`_build_doc`
* :func:`_text_getter`
* :func:`_parse_td`
* :func:`_parse_tables`
* :func:`_parse_tr`
* :func:`_parse_thead`
* :func:`_parse_tbody`
* :func:`_parse_tfoot`
See each method's respective documentation for details on their
functionality.
"""
def __init__(self, io, match, attrs, encoding):
self.io = io
self.match = match
self.attrs = attrs
self.encoding = encoding
def parse_tables(self):
tables = self._parse_tables(self._build_doc(), self.match, self.attrs)
return (self._build_table(table) for table in tables)
def _parse_raw_data(self, rows):
"""Parse the raw data into a list of lists.
Parameters
----------
rows : iterable of node-like
A list of row elements.
text_getter : callable
A callable that gets the text from an individual node. This must be
defined by subclasses.
column_finder : callable
A callable that takes a row node as input and returns a list of the
column node in that row. This must be defined by subclasses.
Returns
-------
data : list of list of strings
"""
data = [[_remove_whitespace(self._text_getter(col)) for col in
self._parse_td(row)] for row in rows]
return data
def _text_getter(self, obj):
"""Return the text of an individual DOM node.
Parameters
----------
obj : node-like
A DOM node.
Returns
-------
text : str or unicode
The text from an individual DOM node.
"""
raise AbstractMethodError(self)
def _parse_td(self, obj):
"""Return the td elements from a row element.
Parameters
----------
obj : node-like
Returns
-------
columns : list of node-like
These are the elements of each row, i.e., the columns.
"""
raise AbstractMethodError(self)
def _parse_tables(self, doc, match, attrs):
"""Return all tables from the parsed DOM.
Parameters
----------
doc : tree-like
The DOM from which to parse the table element.
match : str or regular expression
The text to search for in the DOM tree.
attrs : dict
A dictionary of table attributes that can be used to disambiguate
mutliple tables on a page.
Raises
------
ValueError
* If `match` does not match any text in the document.
Returns
-------
tables : list of node-like
A list of <table> elements to be parsed into raw data.
"""
raise AbstractMethodError(self)
def _parse_tr(self, table):
"""Return the list of row elements from the parsed table element.
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
rows : list of node-like
A list row elements of a table, usually <tr> or <th> elements.
"""
raise AbstractMethodError(self)
def _parse_thead(self, table):
"""Return the header of a table.
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
thead : node-like
A <thead>...</thead> element.
"""
raise AbstractMethodError(self)
def _parse_tbody(self, table):
"""Return the body of the table.
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
tbody : node-like
A <tbody>...</tbody> element.
"""
raise AbstractMethodError(self)
def _parse_tfoot(self, table):
"""Return the footer of the table if any.
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
tfoot : node-like
A <tfoot>...</tfoot> element.
"""
raise AbstractMethodError(self)
def _build_doc(self):
"""Return a tree-like object that can be used to iterate over the DOM.
Returns
-------
obj : tree-like
"""
raise AbstractMethodError(self)
def _build_table(self, table):
header = self._parse_raw_thead(table)
body = self._parse_raw_tbody(table)
footer = self._parse_raw_tfoot(table)
return header, body, footer
def _parse_raw_thead(self, table):
thead = self._parse_thead(table)
res = []
if thead:
res = lmap(self._text_getter, self._parse_th(thead[0]))
return np.atleast_1d(
np.array(res).squeeze()) if res and len(res) == 1 else res
def _parse_raw_tfoot(self, table):
tfoot = self._parse_tfoot(table)
res = []
if tfoot:
res = lmap(self._text_getter, self._parse_td(tfoot[0]))
return np.atleast_1d(
np.array(res).squeeze()) if res and len(res) == 1 else res
def _parse_raw_tbody(self, table):
tbody = self._parse_tbody(table)
try:
res = self._parse_tr(tbody[0])
except IndexError:
res = self._parse_tr(table)
return self._parse_raw_data(res)
class _BeautifulSoupHtml5LibFrameParser(_HtmlFrameParser):
"""HTML to DataFrame parser that uses BeautifulSoup under the hood.
See Also
--------
pandas.io.html._HtmlFrameParser
pandas.io.html._LxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`pandas.io.html._HtmlFrameParser`.
"""
def __init__(self, *args, **kwargs):
super(_BeautifulSoupHtml5LibFrameParser, self).__init__(*args,
**kwargs)
from bs4 import SoupStrainer
self._strainer = SoupStrainer('table')
def _text_getter(self, obj):
return obj.text
def _parse_td(self, row):
return row.find_all(('td', 'th'))
def _parse_tr(self, element):
return element.find_all('tr')
def _parse_th(self, element):
return element.find_all('th')
def _parse_thead(self, table):
return table.find_all('thead')
def _parse_tbody(self, table):
return table.find_all('tbody')
def _parse_tfoot(self, table):
return table.find_all('tfoot')
def _parse_tables(self, doc, match, attrs):
element_name = self._strainer.name
tables = doc.find_all(element_name, attrs=attrs)
if not tables:
raise ValueError('No tables found')
result = []
unique_tables = set()
for table in tables:
if (table not in unique_tables and
table.find(text=match) is not None):
result.append(table)
unique_tables.add(table)
if not result:
raise ValueError("No tables found matching pattern %r" %
match.pattern)
return result
def _setup_build_doc(self):
raw_text = _read(self.io)
if not raw_text:
raise ValueError('No text parsed from document: %s' % self.io)
return raw_text
def _build_doc(self):
from bs4 import BeautifulSoup
return BeautifulSoup(self._setup_build_doc(), features='html5lib',
from_encoding=self.encoding)
def _build_xpath_expr(attrs):
"""Build an xpath expression to simulate bs4's ability to pass in kwargs to
search for attributes when using the lxml parser.
Parameters
----------
attrs : dict
A dict of HTML attributes. These are NOT checked for validity.
Returns
-------
expr : unicode
An XPath expression that checks for the given HTML attributes.
"""
# give class attribute as class_ because class is a python keyword
if 'class_' in attrs:
attrs['class'] = attrs.pop('class_')
s = [u("@%s=%r") % (k, v) for k, v in iteritems(attrs)]
return u('[%s]') % ' and '.join(s)
_re_namespace = {'re': 'http://exslt.org/regular-expressions'}
_valid_schemes = 'http', 'file', 'ftp'
class _LxmlFrameParser(_HtmlFrameParser):
"""HTML to DataFrame parser that uses lxml under the hood.
Warning
-------
This parser can only handle HTTP, FTP, and FILE urls.
See Also
--------
_HtmlFrameParser
_BeautifulSoupLxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`_HtmlFrameParser`.
"""
def __init__(self, *args, **kwargs):
super(_LxmlFrameParser, self).__init__(*args, **kwargs)
def _text_getter(self, obj):
return obj.text_content()
def _parse_td(self, row):
return row.xpath('.//td|.//th')
def _parse_tr(self, table):
expr = './/tr[normalize-space()]'
return table.xpath(expr)
def _parse_tables(self, doc, match, kwargs):
pattern = match.pattern
# 1. check all descendants for the given pattern and only search tables
# 2. go up the tree until we find a table
query = '//table//*[re:test(text(), %r)]/ancestor::table'
xpath_expr = u(query) % pattern
# if any table attributes were given build an xpath expression to
# search for them
if kwargs:
xpath_expr += _build_xpath_expr(kwargs)
tables = doc.xpath(xpath_expr, namespaces=_re_namespace)
if not tables:
raise ValueError("No tables found matching regex %r" % pattern)
return tables
def _build_doc(self):
"""
Raises
------
ValueError
* If a URL that lxml cannot parse is passed.
Exception
* Any other ``Exception`` thrown. For example, trying to parse a
URL that is syntactically correct on a machine with no internet
connection will fail.
See Also
--------
pandas.io.html._HtmlFrameParser._build_doc
"""
from lxml.html import parse, fromstring, HTMLParser
from lxml.etree import XMLSyntaxError
parser = HTMLParser(recover=False, encoding=self.encoding)
try:
# try to parse the input in the simplest way
r = parse(self.io, parser=parser)
try:
r = r.getroot()
except AttributeError:
pass
except (UnicodeDecodeError, IOError):
# if the input is a blob of html goop
if not _is_url(self.io):
r = fromstring(self.io, parser=parser)
try:
r = r.getroot()
except AttributeError:
pass
else:
# not a url
scheme = parse_url(self.io).scheme
if scheme not in _valid_schemes:
# lxml can't parse it
msg = ('%r is not a valid url scheme, valid schemes are '
'%s') % (scheme, _valid_schemes)
raise ValueError(msg)
else:
# something else happened: maybe a faulty connection
raise
else:
if not hasattr(r, 'text_content'):
raise XMLSyntaxError("no text parsed from document", 0, 0, 0)
return r
def _parse_tbody(self, table):
return table.xpath('.//tbody')
def _parse_thead(self, table):
return table.xpath('.//thead')
def _parse_tfoot(self, table):
return table.xpath('.//tfoot')
def _parse_raw_thead(self, table):
expr = './/thead//th'
return [_remove_whitespace(x.text_content()) for x in
table.xpath(expr)]
def _parse_raw_tfoot(self, table):
expr = './/tfoot//th|//tfoot//td'
return [_remove_whitespace(x.text_content()) for x in
table.xpath(expr)]
def _expand_elements(body):
lens = Series(lmap(len, body))
lens_max = lens.max()
not_max = lens[lens != lens_max]
empty = ['']
for ind, length in iteritems(not_max):
body[ind] += empty * (lens_max - length)
def _data_to_frame(data, header, index_col, skiprows,
parse_dates, tupleize_cols, thousands,
decimal, converters, na_values):
head, body, foot = data
if head:
body = [head] + body
if header is None: # special case when a table has <th> elements
header = 0
if foot:
body += [foot]
# fill out elements of body that are "ragged"
_expand_elements(body)
tp = TextParser(body, header=header, index_col=index_col,
skiprows=_get_skiprows(skiprows),
parse_dates=parse_dates, tupleize_cols=tupleize_cols,
thousands=thousands, decimal=decimal,
converters=converters, na_values=na_values)
df = tp.read()
return df
_valid_parsers = {'lxml': _LxmlFrameParser, None: _LxmlFrameParser,
'html5lib': _BeautifulSoupHtml5LibFrameParser,
'bs4': _BeautifulSoupHtml5LibFrameParser}
def _parser_dispatch(flavor):
"""Choose the parser based on the input flavor.
Parameters
----------
flavor : str
The type of parser to use. This must be a valid backend.
Returns
-------
cls : _HtmlFrameParser subclass
The parser class based on the requested input flavor.
Raises
------
ValueError
* If `flavor` is not a valid backend.
ImportError
* If you do not have the requested `flavor`
"""
valid_parsers = list(_valid_parsers.keys())
if flavor not in valid_parsers:
raise ValueError('%r is not a valid flavor, valid flavors are %s' %
(flavor, valid_parsers))
if flavor in ('bs4', 'html5lib'):
if not _HAS_HTML5LIB:
raise ImportError("html5lib not found, please install it")
if not _HAS_BS4:
raise ImportError(
"BeautifulSoup4 (bs4) not found, please install it")
import bs4
if bs4.__version__ == LooseVersion('4.2.0'):
raise ValueError("You're using a version"
" of BeautifulSoup4 (4.2.0) that has been"
" known to cause problems on certain"
" operating systems such as Debian. "
"Please install a version of"
" BeautifulSoup4 != 4.2.0, both earlier"
" and later releases will work.")
else:
if not _HAS_LXML:
raise ImportError("lxml not found, please install it")
return _valid_parsers[flavor]
def _print_as_set(s):
return '{%s}' % ', '.join([pprint_thing(el) for el in s])
def _validate_flavor(flavor):
if flavor is None:
flavor = 'lxml', 'bs4'
elif isinstance(flavor, string_types):
flavor = flavor,
elif isinstance(flavor, collections.Iterable):
if not all(isinstance(flav, string_types) for flav in flavor):
raise TypeError('Object of type %r is not an iterable of strings' %
type(flavor).__name__)
else:
fmt = '{0!r}' if isinstance(flavor, string_types) else '{0}'
fmt += ' is not a valid flavor'
raise ValueError(fmt.format(flavor))
flavor = tuple(flavor)
valid_flavors = set(_valid_parsers)
flavor_set = set(flavor)
if not flavor_set & valid_flavors:
raise ValueError('%s is not a valid set of flavors, valid flavors are '
'%s' % (_print_as_set(flavor_set),
_print_as_set(valid_flavors)))
return flavor
def _parse(flavor, io, match, header, index_col, skiprows,
parse_dates, tupleize_cols, thousands, attrs, encoding,
decimal, converters, na_values):
flavor = _validate_flavor(flavor)
compiled_match = re.compile(match) # you can pass a compiled regex here
# hack around python 3 deleting the exception variable
retained = None
for flav in flavor:
parser = _parser_dispatch(flav)
p = parser(io, compiled_match, attrs, encoding)
try:
tables = p.parse_tables()
except Exception as caught:
retained = caught
else:
break
else:
raise_with_traceback(retained)
ret = []
for table in tables:
try:
ret.append(_data_to_frame(data=table,
header=header,
index_col=index_col,
skiprows=skiprows,
parse_dates=parse_dates,
tupleize_cols=tupleize_cols,
thousands=thousands,
decimal=decimal,
converters=converters,
na_values=na_values
))
except EmptyDataError: # empty table
continue
return ret
def read_html(io, match='.+', flavor=None, header=None, index_col=None,
skiprows=None, attrs=None, parse_dates=False,
tupleize_cols=False, thousands=',', encoding=None,
decimal='.', converters=None, na_values=None):
r"""Read HTML tables into a ``list`` of ``DataFrame`` objects.
Parameters
----------
io : str or file-like
A URL, a file-like object, or a raw string containing HTML. Note that
lxml only accepts the http, ftp and file url protocols. If you have a
URL that starts with ``'https'`` you might try removing the ``'s'``.
match : str or compiled regular expression, optional
The set of tables containing text matching this regex or string will be
returned. Unless the HTML is extremely simple you will probably need to
pass a non-empty string here. Defaults to '.+' (match any non-empty
string). The default value will return all tables contained on a page.
This value is converted to a regular expression so that there is
consistent behavior between Beautiful Soup and lxml.
flavor : str or None, container of strings
The parsing engine to use. 'bs4' and 'html5lib' are synonymous with
each other, they are both there for backwards compatibility. The
default of ``None`` tries to use ``lxml`` to parse and if that fails it
falls back on ``bs4`` + ``html5lib``.
header : int or list-like or None, optional
The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
make the columns headers.
index_col : int or list-like or None, optional
The column (or list of columns) to use to create the index.
skiprows : int or list-like or slice or None, optional
0-based. Number of rows to skip after parsing the column integer. If a
sequence of integers or a slice is given, will skip the rows indexed by
that sequence. Note that a single element sequence means 'skip the nth
row' whereas an integer means 'skip n rows'.
attrs : dict or None, optional
This is a dictionary of attributes that you can pass to use to identify
the table in the HTML. These are not checked for validity before being
passed to lxml or Beautiful Soup. However, these attributes must be
valid HTML table attributes to work correctly. For example, ::
attrs = {'id': 'table'}
is a valid attribute dictionary because the 'id' HTML tag attribute is
a valid HTML attribute for *any* HTML tag as per `this document
<http://www.w3.org/TR/html-markup/global-attributes.html>`__. ::
attrs = {'asdf': 'table'}
is *not* a valid attribute dictionary because 'asdf' is not a valid
HTML attribute even if it is a valid XML attribute. Valid HTML 4.01
table attributes can be found `here
<http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
working draft of the HTML 5 spec can be found `here
<http://www.w3.org/TR/html-markup/table.html>`__. It contains the
latest information on table attributes for the modern web.
parse_dates : bool, optional
See :func:`~pandas.read_csv` for more details.
tupleize_cols : bool, optional
If ``False`` try to parse multiple header rows into a
:class:`~pandas.MultiIndex`, otherwise return raw tuples. Defaults to
``False``.
thousands : str, optional
Separator to use to parse thousands. Defaults to ``','``.
encoding : str or None, optional
The encoding used to decode the web page. Defaults to ``None``.``None``
preserves the previous encoding behavior, which depends on the
underlying parser library (e.g., the parser library will try to use
the encoding provided by the document).
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European
data).
.. versionadded:: 0.18.2
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the cell (not column) content, and return the
transformed content.
.. versionadded:: 0.18.2
na_values : iterable, default None
Custom NA values
.. versionadded:: 0.18.2
Returns
-------
dfs : list of DataFrames
Notes
-----
Before using this function you should read the :ref:`gotchas about the
HTML parsing libraries <html-gotchas>`.
Expect to do some cleanup after you call this function. For example, you
might need to manually assign column names if the column names are
converted to NaN when you pass the `header=0` argument. We try to assume as
little as possible about the structure of the table and push the
idiosyncrasies of the HTML contained in the table to the user.
This function searches for ``<table>`` elements and only for ``<tr>``
and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
element in the table. ``<td>`` stands for "table data".
Similar to :func:`~pandas.read_csv` the `header` argument is applied
**after** `skiprows` is applied.
This function will *always* return a list of :class:`DataFrame` *or*
it will fail, e.g., it will *not* return an empty list.
Examples
--------
See the :ref:`read_html documentation in the IO section of the docs
<io.read_html>` for some examples of reading in HTML tables.
See Also
--------
pandas.read_csv
"""
_importers()
# Type check here. We don't want to parse only to fail because of an
# invalid value of an integer skiprows.
if isinstance(skiprows, numbers.Integral) and skiprows < 0:
raise ValueError('cannot skip rows starting from the end of the '
'data (you passed a negative value)')
_validate_header_arg(header)
return _parse(flavor, io, match, header, index_col, skiprows,
parse_dates, tupleize_cols, thousands, attrs, encoding,
decimal, converters, na_values)