@@ -135,29 +135,35 @@ def min(self, *, axis: Optional[int] = None, skipna: bool = True, **kwargs):
135
135
result = pandas_backports .nanmin (
136
136
values = self ._ndarray , axis = axis , mask = self .isna (), skipna = skipna
137
137
)
138
- return self ._box_func (result )
138
+ if axis is None or self .ndim == 1 :
139
+ return self ._box_func (result )
140
+ return self ._from_backing_data (result )
139
141
140
142
def max (self , * , axis : Optional [int ] = None , skipna : bool = True , ** kwargs ):
141
143
pandas_backports .numpy_validate_max ((), kwargs )
142
144
result = pandas_backports .nanmax (
143
145
values = self ._ndarray , axis = axis , mask = self .isna (), skipna = skipna
144
146
)
145
- return self ._box_func (result )
146
-
147
- if pandas_release >= (1 , 2 ):
148
-
149
- def median (
150
- self ,
151
- * ,
152
- axis : Optional [int ] = None ,
153
- out = None ,
154
- overwrite_input : bool = False ,
155
- keepdims : bool = False ,
156
- skipna : bool = True ,
157
- ):
158
- pandas_backports .numpy_validate_median (
159
- (),
160
- {"out" : out , "overwrite_input" : overwrite_input , "keepdims" : keepdims },
161
- )
162
- result = pandas_backports .nanmedian (self ._ndarray , axis = axis , skipna = skipna )
147
+ if axis is None or self .ndim == 1 :
148
+ return self ._box_func (result )
149
+ return self ._from_backing_data (result )
150
+
151
+ def median (
152
+ self ,
153
+ * ,
154
+ axis : Optional [int ] = None ,
155
+ out = None ,
156
+ overwrite_input : bool = False ,
157
+ keepdims : bool = False ,
158
+ skipna : bool = True ,
159
+ ):
160
+ if not hasattr (pandas_backports , "numpy_validate_median" ):
161
+ raise NotImplementedError ("Need pandas 1.3 or later to calculate median." )
162
+
163
+ pandas_backports .numpy_validate_median (
164
+ (), {"out" : out , "overwrite_input" : overwrite_input , "keepdims" : keepdims },
165
+ )
166
+ result = pandas_backports .nanmedian (self ._ndarray , axis = axis , skipna = skipna )
167
+ if axis is None or self .ndim == 1 :
163
168
return self ._box_func (result )
169
+ return self ._from_backing_data (result )
0 commit comments