-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_time.py
146 lines (132 loc) · 5.08 KB
/
test_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import numpy
import pandas
import pytest
# To register the types.
import db_dtypes # noqa
from db_dtypes import pandas_backports
def test_box_func():
input_array = db_dtypes.TimeArray([])
input_datetime = datetime.datetime(1970, 1, 1, 1, 2, 3, 456789)
input_np = numpy.datetime64(input_datetime)
boxed_value = input_array._box_func(input_np)
assert boxed_value.hour == 1
assert boxed_value.minute == 2
assert boxed_value.second == 3
assert boxed_value.microsecond == 456789
input_delta = input_datetime - datetime.datetime(1970, 1, 1)
input_nanoseconds = (
1_000 * input_delta.microseconds
+ 1_000_000_000 * input_delta.seconds
+ 1_000_000_000 * 60 * 60 * 24 * input_delta.days
)
boxed_value = input_array._box_func(input_nanoseconds)
assert boxed_value.hour == 1
assert boxed_value.minute == 2
assert boxed_value.second == 3
assert boxed_value.microsecond == 456789
@pytest.mark.parametrize(
"value, expected",
[
# Midnight
("0", datetime.time(0)),
("0:0", datetime.time(0)),
("0:0:0", datetime.time(0)),
("0:0:0.", datetime.time(0)),
("0:0:0.0", datetime.time(0)),
("0:0:0.000000", datetime.time(0)),
("00:00:00", datetime.time(0, 0, 0)),
(" 00:00:00 ", datetime.time(0, 0, 0)),
# Short values
("1", datetime.time(1)),
("23", datetime.time(23)),
("1:2", datetime.time(1, 2)),
("23:59", datetime.time(23, 59)),
("1:2:3", datetime.time(1, 2, 3)),
("23:59:59", datetime.time(23, 59, 59)),
# Non-octal values.
("08:08:08", datetime.time(8, 8, 8)),
("09:09:09", datetime.time(9, 9, 9)),
# Fractional seconds can cause rounding problems if cast to float. See:
# https://github.com/googleapis/python-db-dtypes-pandas/issues/18
("0:0:59.876543", datetime.time(0, 0, 59, 876543)),
(
numpy.datetime64("1970-01-01 00:00:59.876543"),
datetime.time(0, 0, 59, 876543),
),
("01:01:01.010101", datetime.time(1, 1, 1, 10101)),
(pandas.Timestamp("1970-01-01 01:01:01.010101"), datetime.time(1, 1, 1, 10101)),
("09:09:09.090909", datetime.time(9, 9, 9, 90909)),
(datetime.time(9, 9, 9, 90909), datetime.time(9, 9, 9, 90909)),
("11:11:11.111111", datetime.time(11, 11, 11, 111111)),
("19:16:23.987654", datetime.time(19, 16, 23, 987654)),
# Microsecond precision
("00:00:00.000001", datetime.time(0, 0, 0, 1)),
("23:59:59.999999", datetime.time(23, 59, 59, 999_999)),
# TODO: Support nanosecond precision values without truncation.
# https://github.com/googleapis/python-db-dtypes-pandas/issues/19
("0:0:0.000001001", datetime.time(0, 0, 0, 1)),
("23:59:59.999999000", datetime.time(23, 59, 59, 999_999)),
("23:59:59.999999999", datetime.time(23, 59, 59, 999_999)),
],
)
def test_time_parsing(value, expected):
assert pandas.Series([value], dtype="dbtime")[0] == expected
@pytest.mark.parametrize(
"value, error",
[
("thursday", "Bad time string: 'thursday'"),
("1:2:3thursday", "Bad time string: '1:2:3thursday'"),
("1:2:3:4", "Bad time string: '1:2:3:4'"),
("1:2:3.f", "Bad time string: '1:2:3.f'"),
("1:d:3", "Bad time string: '1:d:3'"),
("1:2.3", "Bad time string: '1:2.3'"),
("", "Bad time string: ''"),
("1:2:99", "second must be in 0[.][.]59"),
("1:99", "minute must be in 0[.][.]59"),
("99", "hour must be in 0[.][.]23"),
],
)
def test_time_parsing_errors(value, error):
with pytest.raises(ValueError, match=error):
pandas.Series([value], dtype="dbtime")
@pytest.mark.skipif(
not hasattr(pandas_backports, "numpy_validate_median"),
reason="median not available with this version of pandas",
)
@pytest.mark.parametrize(
"values, expected",
[
(
["00:00:00", "12:34:56.789101", "23:59:59.999999"],
datetime.time(12, 34, 56, 789101),
),
(
[
None,
"06:30:00",
pandas.NA if hasattr(pandas, "NA") else None,
pandas.NaT,
float("nan"),
],
datetime.time(6, 30),
),
(["2:22:21.222222", "2:22:23.222222"], datetime.time(2, 22, 22, 222222)),
],
)
def test_date_median(values, expected):
series = pandas.Series(values, dtype="dbtime")
assert series.median() == expected