Skip to content

Commit 59c4554

Browse files
committed
Course material updated
1 parent 9b22113 commit 59c4554

32 files changed

+5958
-0
lines changed
Lines changed: 204 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,204 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"id": "b6c71ae6-7f42-473f-aec4-c51d37f021d7",
6+
"metadata": {},
7+
"source": [
8+
"## Odd & Even Number"
9+
]
10+
},
11+
{
12+
"cell_type": "code",
13+
"execution_count": 6,
14+
"id": "641a7c4c-0d05-4813-8d98-3b813a7d690b",
15+
"metadata": {
16+
"tags": []
17+
},
18+
"outputs": [
19+
{
20+
"name": "stdin",
21+
"output_type": "stream",
22+
"text": [
23+
"Enter a number: 10\n"
24+
]
25+
},
26+
{
27+
"name": "stdout",
28+
"output_type": "stream",
29+
"text": [
30+
"The number is even.\n"
31+
]
32+
}
33+
],
34+
"source": [
35+
"n = int(input(\"Enter a number: \"))\n",
36+
"\n",
37+
"def oddEven(num):\n",
38+
" if num % 2 == 0:\n",
39+
" print(\"The number is even.\")\n",
40+
" else:\n",
41+
" print(\"The number is odd.\")\n",
42+
" \n",
43+
"oddEven(n)"
44+
]
45+
},
46+
{
47+
"cell_type": "markdown",
48+
"id": "6abfb252-c34c-44a0-af2d-48553d15709b",
49+
"metadata": {},
50+
"source": [
51+
"## Prime numbers upto n"
52+
]
53+
},
54+
{
55+
"cell_type": "code",
56+
"execution_count": 19,
57+
"id": "f04634ef-8682-4f23-8419-71791a497b6c",
58+
"metadata": {
59+
"tags": []
60+
},
61+
"outputs": [
62+
{
63+
"name": "stdin",
64+
"output_type": "stream",
65+
"text": [
66+
"Enter a number: 19\n"
67+
]
68+
},
69+
{
70+
"name": "stdout",
71+
"output_type": "stream",
72+
"text": [
73+
"2\n",
74+
"3\n",
75+
"5\n",
76+
"7\n",
77+
"11\n",
78+
"13\n",
79+
"17\n",
80+
"19\n"
81+
]
82+
}
83+
],
84+
"source": [
85+
"n = int(input(\"Enter a number: \")) \n",
86+
"\n",
87+
"for num in range(1, n+1):\n",
88+
" if num > 1:\n",
89+
" for i in range(2, num):\n",
90+
" if num % i == 0:\n",
91+
" break\n",
92+
" else:\n",
93+
" print(num)"
94+
]
95+
},
96+
{
97+
"cell_type": "markdown",
98+
"id": "b1b14ebe-258e-4d02-9713-0be13b220b5d",
99+
"metadata": {},
100+
"source": [
101+
"## Read and Plot from File"
102+
]
103+
},
104+
{
105+
"cell_type": "code",
106+
"execution_count": 46,
107+
"id": "cfe4c568-ce6a-4969-b47e-1c11c147738c",
108+
"metadata": {
109+
"tags": []
110+
},
111+
"outputs": [],
112+
"source": [
113+
"import matplotlib.pyplot as plt"
114+
]
115+
},
116+
{
117+
"cell_type": "code",
118+
"execution_count": 48,
119+
"id": "2dfb676d-0519-402a-9a2a-936b5f8ace84",
120+
"metadata": {
121+
"tags": []
122+
},
123+
"outputs": [
124+
{
125+
"name": "stdout",
126+
"output_type": "stream",
127+
"text": [
128+
"[56, 84, 15, 35, 69, 24]\n",
129+
"[48, 65, 18, 35, 49, 20]\n"
130+
]
131+
}
132+
],
133+
"source": [
134+
"f = open(\"sample.txt\", \"r\")\n",
135+
"\n",
136+
"x = []\n",
137+
"a = f.readline().split()\n",
138+
"for item in a:\n",
139+
" x.append(int(item))\n",
140+
"print(x)\n",
141+
"\n",
142+
"y = []\n",
143+
"b = f.readline().split()\n",
144+
"for item in b:\n",
145+
" y.append(int(item))\n",
146+
"print(y)"
147+
]
148+
},
149+
{
150+
"cell_type": "code",
151+
"execution_count": 51,
152+
"id": "7ceaf6b8-e5be-4dba-8fbe-ec04af4522fe",
153+
"metadata": {
154+
"tags": []
155+
},
156+
"outputs": [
157+
{
158+
"data": {
159+
"text/plain": [
160+
"<matplotlib.collections.PathCollection at 0x1a2e2913e50>"
161+
]
162+
},
163+
"execution_count": 51,
164+
"metadata": {},
165+
"output_type": "execute_result"
166+
},
167+
{
168+
"data": {
169+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfmElEQVR4nO3df2xV9eH/8dct1dtWb++E2Xt7R8WLdmotKIhgK1vJtB2MkRk2N/mhELIF+aFUt4HgkhajLbCM4MLSDbYQTMdYFmFfmBGpU+scw1ZIZ1sMsnGnnfbaTfDeKrTE9v39g0/PuBbUW9p323ufj+Qk9px36/u+U+0z59xzrssYYwQAAGBJymBPAAAAJBfiAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFalDvYEPqm7u1vvvvuuPB6PXC7XYE8HAAB8DsYYtbe3KxAIKCXl089tDLn4ePfdd5WTkzPY0wAAAH3Q0tKi0aNHf+qYIRcfHo9H0tnJZ2ZmDvJsAADA5xGNRpWTk+P8Hf80Qy4+ei61ZGZmEh8AAAwzn+ctE7zhFAAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwKoh95AxAAAwMLq6jepCJ9TW3qEsT5omB0dqRIr9z1EjPgAASAL7mlq1du8RtUY6nH3Z3jSVzcrT9Pxsq3PhsgsAAAluX1OrllQfjgkPSQpHOrSk+rD2NbVanQ/xAQBAAuvqNlq794jMeY717Fu794i6us83YmAQHwAAJLC60IleZzzOZSS1RjpUFzphbU7EBwAACayt/cLh0Zdx/YH4AAAggWV50vp1XH8gPgAASGCTgyOV7U3ThW6odensXS+TgyOtzYn4AAAggY1IcalsVp4k9QqQnq/LZuVZfd4H8QEAQIKbnp+tqvkT5ffGXlrxe9NUNX+i9ed88JAxAACSwPT8bBXn+XnCKQAAsGdEiksF14wa7Glw2QUAANhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFgVd3y88847mj9/vkaNGqWMjAzdfPPNOnTokHPcGKPy8nIFAgGlp6dr2rRpam5u7tdJAwCA4Suu+Dh58qRuv/12XXLJJXr22Wd15MgR/exnP9MXvvAFZ8yGDRu0ceNGbd68WfX19fL7/SouLlZ7e3t/zx0AAAxDLmOM+byDH3nkEf31r3/VX/7yl/MeN8YoEAiotLRUq1atkiR1dnbK5/Np/fr1Wrx48Wf+O6LRqLxeryKRiDIzMz/v1AAAwCCK5+93XGc+9uzZo0mTJunuu+9WVlaWJkyYoK1btzrHQ6GQwuGwSkpKnH1ut1tFRUU6cODAeX9mZ2enotFozAYAABJXXPFx/PhxVVVVKTc3V88995zuv/9+Pfjgg3rqqackSeFwWJLk8/livs/n8znHPqmyslJer9fZcnJy+vI6AADAMBFXfHR3d2vixImqqKjQhAkTtHjxYv3gBz9QVVVVzDiXyxXztTGm174eq1evViQScbaWlpY4XwIAABhO4oqP7Oxs5eXlxey74YYb9Pbbb0uS/H6/JPU6y9HW1tbrbEgPt9utzMzMmA0AACSuuOLj9ttv19GjR2P2vfnmmxozZowkKRgMyu/3q6amxjl+5swZ1dbWqrCwsB+mCwAAhrvUeAY/9NBDKiwsVEVFhb773e+qrq5OW7Zs0ZYtWySdvdxSWlqqiooK5ebmKjc3VxUVFcrIyNDcuXMH5AUAAIDhJa74uPXWW7V7926tXr1ajz32mILBoDZt2qR58+Y5Y1auXKnTp09r6dKlOnnypKZMmaL9+/fL4/H0++QBAMDwE9dzPmzgOR8AAAw/A/acDwAAgItFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVXHFR3l5uVwuV8zm9/ud48YYlZeXKxAIKD09XdOmTVNzc3O/TxoAAAxfcZ/5uPHGG9Xa2upsjY2NzrENGzZo48aN2rx5s+rr6+X3+1VcXKz29vZ+nTQAABi+4o6P1NRU+f1+Z7vyyislnT3rsWnTJj366KOaPXu28vPztX37dp06dUo7duzo94kDAIDhKe74OHbsmAKBgILBoO655x4dP35ckhQKhRQOh1VSUuKMdbvdKioq0oEDBy748zo7OxWNRmM2AACQuOKKjylTpuipp57Sc889p61btyocDquwsFDvv/++wuGwJMnn88V8j8/nc46dT2Vlpbxer7Pl5OT04WUAAIDhIq74mDFjhr797W9r3LhxuvPOO/XMM89IkrZv3+6McblcMd9jjOm171yrV69WJBJxtpaWlnimBAAAhpmLutX2sssu07hx43Ts2DHnrpdPnuVoa2vrdTbkXG63W5mZmTEbACCxdHUb/e2f7+v/Nbyjv/3zfXV1m8GeEgZR6sV8c2dnp9544w195StfUTAYlN/vV01NjSZMmCBJOnPmjGpra7V+/fp+mSwAYPjZ19SqtXuPqDXS4ezL9qapbFaepudnD+LMMFjiOvPxox/9SLW1tQqFQnr11Vf1ne98R9FoVAsWLJDL5VJpaakqKiq0e/duNTU1aeHChcrIyNDcuXMHav4AgCFsX1OrllQfjgkPSQpHOrSk+rD2NbUO0swwmOI68/Hvf/9bc+bM0X//+19deeWVuu2223Tw4EGNGTNGkrRy5UqdPn1aS5cu1cmTJzVlyhTt379fHo9nQCYPABi6urqN1u49ovNdYDGSXJLW7j2i4jy/RqRc+L2BSDwuY8yQuvAWjUbl9XoViUR4/wcADGN/++f7mrP14GeO+90PblPBNaMszAgDKZ6/33y2CwBgQLS1d3z2oDjGIXEQHwCAAZHlSevXcUgcF3W3CwAkoq5uo7rQCbW1dyjLk6bJwZG8J6EPJgdHKtubpnCk47zv+3BJ8nvPri+SC/EBAOfgttD+MyLFpbJZeVpSfVguKSZAelKubFYeYZeEuOwCAP+H20L73/T8bFXNnyi/N/bSit+bpqr5Ewm6JMWZDwAQt4UOpOn52SrO83MpCw7iAwAk1YVO9DrjcS4jqTXSobrQCW4L7YMRKS7WDQ4uuwCAuC0UsIn4AABxWyhgE/EBAPrfbaEXeheCS2fveuG2UODiER8AoP/dFiqpV4BwWyjQv4gPAPg/3BYK2MHdLgBwDm4LBQYe8QEAn8BtocDA4rILAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYBXxAQAArCI+AACAVcQHAACwivgAAABWER8AAMAq4gMAAFhFfAAAAKuIDwAAYNVFxUdlZaVcLpdKS0udfcYYlZeXKxAIKD09XdOmTVNzc/PFzhMAACSIPsdHfX29tmzZovHjx8fs37BhgzZu3KjNmzervr5efr9fxcXFam9vv+jJAgCA4a9P8fHhhx9q3rx52rp1q6644gpnvzFGmzZt0qOPPqrZs2crPz9f27dv16lTp7Rjx45+mzQAABi++hQfy5Yt08yZM3XnnXfG7A+FQgqHwyopKXH2ud1uFRUV6cCBA+f9WZ2dnYpGozEbAABIXKnxfsPOnTt1+PBh1dfX9zoWDoclST6fL2a/z+fTW2+9dd6fV1lZqbVr18Y7DQAAMEzFdeajpaVFK1asUHV1tdLS0i44zuVyxXxtjOm1r8fq1asViUScraWlJZ4pAQCAYSauMx+HDh1SW1ubbrnlFmdfV1eXXn75ZW3evFlHjx6VdPYMSHZ2tjOmra2t19mQHm63W263uy9zBwAAw1BcZz7uuOMONTY2qqGhwdkmTZqkefPmqaGhQWPHjpXf71dNTY3zPWfOnFFtba0KCwv7ffIAAGD4ievMh8fjUX5+fsy+yy67TKNGjXL2l5aWqqKiQrm5ucrNzVVFRYUyMjI0d+7c/ps1AAAYtuJ+w+lnWblypU6fPq2lS5fq5MmTmjJlivbv3y+Px9Pf/yoAADAMuYwxZrAnca5oNCqv16tIJKLMzMzBng4AAPgc4vn7zWe7AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWJU62BMAbOvqNqoLnVBbe4eyPGmaHBypESmuwZ4WACQN4gNJZV9Tq9buPaLWSIezL9ubprJZeZqenz2IMwOA5MFlFySNfU2tWlJ9OCY8JCkc6dCS6sPa19Q6SDMDgORCfCApdHUbrd17ROY8x3r2rd17RF3d5xsBAOhPxAeSQl3oRK8zHucyklojHaoLnbA3KQBIUsQHkkJb+4XDoy/jAAB9R3wgKWR50vp1HACg74gPJIXJwZHK9qbpQjfUunT2rpfJwZE2pwUASYn4QFIYkeJS2aw8SeoVID1fl83K43kfAGAB8YGkMT0/W1XzJ8rvjb204vemqWr+RJ7zAQCW8JAxJJXp+dkqzvPzhFMAGETEB5LOiBSXCq4ZNdjTAICkxWUXAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgVVzxUVVVpfHjxyszM1OZmZkqKCjQs88+6xw3xqi8vFyBQEDp6emaNm2ampub+33SAABg+IorPkaPHq1169bptdde02uvvaavfe1r+ta3vuUExoYNG7Rx40Zt3rxZ9fX18vv9Ki4uVnt7+4BMHgAADD8uY4y5mB8wcuRI/fSnP9WiRYsUCARUWlqqVatWSZI6Ozvl8/m0fv16LV68+HP9vGg0Kq/Xq0gkoszMzIuZGgAAsCSev999fs9HV1eXdu7cqY8++kgFBQUKhUIKh8MqKSlxxrjdbhUVFenAgQMX/DmdnZ2KRqMxGwAASFxxx0djY6Muv/xyud1u3X///dq9e7fy8vIUDoclST6fL2a8z+dzjp1PZWWlvF6vs+Xk5MQ7JQAAMIzEHR/XXXedGhoadPDgQS1ZskQLFizQkSNHnOMulytmvDGm175zrV69WpFIxNlaWlrinRIAABhGUuP9hksvvVTXXnutJGnSpEmqr6/Xk08+6bzPIxwOKzs72xnf1tbW62zIudxut9xud7zTAAAAw9RFP+fDGKPOzk4Fg0H5/X7V1NQ4x86cOaPa2loVFhZe7L8GAAAkiLjOfKxZs0YzZsxQTk6O2tvbtXPnTr300kvat2+fXC6XSktLVVFRodzcXOXm5qqiokIZGRmaO3fuQM0fAAAMM3HFx3vvvad7771Xra2t8nq9Gj9+vPbt26fi4mJJ0sqVK3X69GktXbpUJ0+e1JQpU7R//355PJ4BmTwAABh+Lvo5H/2N53wAADD8WHnOBwAAQF8QHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABgFfEBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWJU62BNA/+vqNqoLnVBbe4eyPGmaHBypESmuwZ4WAACS4jzzUVlZqVtvvVUej0dZWVm66667dPTo0ZgxxhiVl5crEAgoPT1d06ZNU3Nzc79OGhe2r6lVU9e/oDlbD2rFzgbN2XpQU9e/oH1NrYM9NQAAJMUZH7W1tVq2bJkOHjyompoaffzxxyopKdFHH33kjNmwYYM2btyozZs3q76+Xn6/X8XFxWpvb+/3ySPWvqZWLak+rNZIR8z+cKRDS6oPEyAAgCHBZYwxff3m//znP8rKylJtba2++tWvyhijQCCg0tJSrVq1SpLU2dkpn8+n9evXa/HixZ/5M6PRqLxeryKRiDIzM/s6taTT1W00df0LvcKjh0uS35umV1Z9jUswAIB+F8/f74t6w2kkEpEkjRw5UpIUCoUUDodVUlLijHG73SoqKtKBAwfO+zM6OzsVjUZjNsSvLnTiguEhSUZSa6RDdaET9iYFAMB59Dk+jDF6+OGHNXXqVOXn50uSwuGwJMnn88WM9fl8zrFPqqyslNfrdbacnJy+TimptbVfODz6Mg4AgIHS5/hYvny5Xn/9df3ud7/rdczlij2tb4zpta/H6tWrFYlEnK2lpaWvU0pqWZ60fh0HAMBA6dOttg888ID27Nmjl19+WaNHj3b2+/1+SWfPgGRnZzv729raep0N6eF2u+V2u/syDZxjcnCksr1pCkc6dL438fS852NycKTtqQEAECOuMx/GGC1fvly7du3SCy+8oGAwGHM8GAzK7/erpqbG2XfmzBnV1taqsLCwf2aM8xqR4lLZrDxJZ0PjXD1fl83K482mAIBBF1d8LFu2TNXV1dqxY4c8Ho/C4bDC4bBOnz4t6ezlltLSUlVUVGj37t1qamrSwoULlZGRoblz5w7IC8D/TM/PVtX8ifJ7Yy+t+L1pqpo/UdPzsy/wnQAA2BPXrbYXet/Gtm3btHDhQklnz46sXbtWv/rVr3Ty5ElNmTJFv/jFL5w3pX4WbrW9eDzhFABgWzx/vy/qOR8DgfgAAGD4sfacDwAAgHgRHwAAwKqk+VRb3gcBAMDQkBTxsa+pVWv3Hol5/Hi2N01ls/K4AwQAAMsS/rILn/QKAMDQktDx0dVttHbvkfM+8bNn39q9R9TVPaRu+AEAIKEldHzwSa8AAAw9CR0ffNIrAABDT0LHB5/0CgDA0JPQ8dHzSa8XuqHWpbN3vfBJrwAA2JPQ8cEnvQIAMPQkdHxIfNIrAABDTVI8ZGx6fraK8/w84RQAgCEgKeJDOnsJpuCaUYM9DQAAkl7CX3YBAABDC/EBAACsIj4AAIBVxAcAALCK+AAAAFYRHwAAwCriAwAAWEV8AAAAq4gPAABg1ZB7wqkxRpIUjUYHeSYAAODz6vm73fN3/NMMufhob2+XJOXk5AzyTAAAQLza29vl9Xo/dYzLfJ5Esai7u1vvvvuuPB6PXK7E++C3aDSqnJwctbS0KDMzc7CnMyhYA9agB+vAGkisQY/hvg7GGLW3tysQCCgl5dPf1THkznykpKRo9OjRgz2NAZeZmTksf7n6E2vAGvRgHVgDiTXoMZzX4bPOePTgDacAAMAq4gMAAFhFfFjmdrtVVlYmt9s92FMZNKwBa9CDdWANJNagRzKtw5B7wykAAEhsnPkAAABWER8AAMAq4gMAAFhFfAAAAKuIjwFQWVmpW2+9VR6PR1lZWbrrrrt09OjRmDHGGJWXlysQCCg9PV3Tpk1Tc3PzIM24/1VVVWn8+PHOw3IKCgr07LPPOscT/fWfT2VlpVwul0pLS519ybAO5eXlcrlcMZvf73eOJ8MaSNI777yj+fPna9SoUcrIyNDNN9+sQ4cOOceTYR2uvvrqXr8LLpdLy5Ytk5Qca/Dxxx/rJz/5iYLBoNLT0zV27Fg99thj6u7udsYkwzrIoN99/etfN9u2bTNNTU2moaHBzJw501x11VXmww8/dMasW7fOeDwe8/TTT5vGxkbzve99z2RnZ5toNDqIM+8/e/bsMc8884w5evSoOXr0qFmzZo255JJLTFNTkzEm8V//J9XV1Zmrr77ajB8/3qxYscLZnwzrUFZWZm688UbT2trqbG1tbc7xZFiDEydOmDFjxpiFCxeaV1991YRCIfP888+bf/zjH86YZFiHtra2mN+DmpoaI8m8+OKLxpjkWIPHH3/cjBo1yvzpT38yoVDI/OEPfzCXX3652bRpkzMmGdaB+LCgra3NSDK1tbXGGGO6u7uN3+8369atc8Z0dHQYr9drfvnLXw7WNAfcFVdcYX79618n3etvb283ubm5pqamxhQVFTnxkSzrUFZWZm666abzHkuWNVi1apWZOnXqBY8nyzp80ooVK8w111xjuru7k2YNZs6caRYtWhSzb/bs2Wb+/PnGmOT5XeCyiwWRSESSNHLkSElSKBRSOBxWSUmJM8btdquoqEgHDhwYlDkOpK6uLu3cuVMfffSRCgoKku71L1u2TDNnztSdd94Zsz+Z1uHYsWMKBAIKBoO65557dPz4cUnJswZ79uzRpEmTdPfddysrK0sTJkzQ1q1bnePJsg7nOnPmjKqrq7Vo0SK5XK6kWYOpU6fqz3/+s958801J0t///ne98sor+sY3viEpeX4XhtwHyyUaY4wefvhhTZ06Vfn5+ZKkcDgsSfL5fDFjfT6f3nrrLetzHCiNjY0qKChQR0eHLr/8cu3evVt5eXnOf0CJ/volaefOnTp8+LDq6+t7HUuW34MpU6boqaee0pe//GW99957evzxx1VYWKjm5uakWYPjx4+rqqpKDz/8sNasWaO6ujo9+OCDcrvduu+++5JmHc71xz/+UR988IEWLlwoKXn+e1i1apUikYiuv/56jRgxQl1dXXriiSc0Z84cScmzDsTHAFu+fLlef/11vfLKK72OuVyumK+NMb32DWfXXXedGhoa9MEHH+jpp5/WggULVFtb6xxP9Nff0tKiFStWaP/+/UpLS7vguERfhxkzZjj/PG7cOBUUFOiaa67R9u3bddttt0lK/DXo7u7WpEmTVFFRIUmaMGGCmpubVVVVpfvuu88Zl+jrcK7f/OY3mjFjhgKBQMz+RF+D3//+96qurtaOHTt04403qqGhQaWlpQoEAlqwYIEzLtHXgcsuA+iBBx7Qnj179OKLL2r06NHO/p53+vcUbo+2trZetTucXXrppbr22ms1adIkVVZW6qabbtKTTz6ZNK//0KFDamtr0y233KLU1FSlpqaqtrZWP//5z5Wamuq81kRfh0+67LLLNG7cOB07dixpfheys7OVl5cXs++GG27Q22+/LSl5/p/Q46233tLzzz+v73//+86+ZFmDH//4x3rkkUd0zz33aNy4cbr33nv10EMPqbKyUlLyrAPxMQCMMVq+fLl27dqlF154QcFgMOZ4MBiU3+9XTU2Ns+/MmTOqra1VYWGh7elaY4xRZ2dn0rz+O+64Q42NjWpoaHC2SZMmad68eWpoaNDYsWOTYh0+qbOzU2+88Yays7OT5nfh9ttv73W7/ZtvvqkxY8ZISr7/J2zbtk1ZWVmaOXOmsy9Z1uDUqVNKSYn90ztixAjnVttkWQfudhkAS5YsMV6v17z00ksxt5WdOnXKGbNu3Trj9XrNrl27TGNjo5kzZ05C3Uq1evVq8/LLL5tQKGRef/11s2bNGpOSkmL2799vjEn8138h597tYkxyrMMPf/hD89JLL5njx4+bgwcPmm9+85vG4/GYf/3rX8aY5FiDuro6k5qaap544glz7Ngx89vf/tZkZGSY6upqZ0wyrIMxxnR1dZmrrrrKrFq1qtexZFiDBQsWmC996UvOrba7du0yX/ziF83KlSudMcmwDsTHAJB03m3btm3OmO7ublNWVmb8fr9xu93mq1/9qmlsbBy8SfezRYsWmTFjxphLL73UXHnlleaOO+5wwsOYxH/9F/LJ+EiGdeh5RsEll1xiAoGAmT17tmlubnaOJ8MaGGPM3r17TX5+vnG73eb66683W7ZsiTmeLOvw3HPPGUnm6NGjvY4lwxpEo1GzYsUKc9VVV5m0tDQzduxY8+ijj5rOzk5nTDKsg8sYYwbxxAsAAEgyvOcDAABYRXwAAACriA8AAGAV8QEAAKwiPgAAgFXEBwAAsIr4AAAAVhEfAADAKuIDAABYRXwAAACriA8AAGAV8QEAAKz6//o1sfcAkabJAAAAAElFTkSuQmCC",
170+
"text/plain": [
171+
"<Figure size 640x480 with 1 Axes>"
172+
]
173+
},
174+
"metadata": {},
175+
"output_type": "display_data"
176+
}
177+
],
178+
"source": [
179+
"plt.scatter(x, y)"
180+
]
181+
}
182+
],
183+
"metadata": {
184+
"kernelspec": {
185+
"display_name": "Python 3 (ipykernel)",
186+
"language": "python",
187+
"name": "python3"
188+
},
189+
"language_info": {
190+
"codemirror_mode": {
191+
"name": "ipython",
192+
"version": 3
193+
},
194+
"file_extension": ".py",
195+
"mimetype": "text/x-python",
196+
"name": "python",
197+
"nbconvert_exporter": "python",
198+
"pygments_lexer": "ipython3",
199+
"version": "3.9.16"
200+
}
201+
},
202+
"nbformat": 4,
203+
"nbformat_minor": 5
204+
}

.ipynb_checkpoints/sample-checkpoint.txt

Whitespace-only changes.

0 commit comments

Comments
 (0)