Skip to content

Latest commit

 

History

History
980 lines (635 loc) · 27.9 KB

advanced.rst

File metadata and controls

980 lines (635 loc) · 27.9 KB
.. currentmodule:: pandas

.. ipython:: python
   :suppress:

   import numpy as np
   import pandas as pd
   np.random.seed(123456)
   np.set_printoptions(precision=4, suppress=True)
   pd.options.display.max_rows=15

MultiIndex / Advanced Indexing

This section covers indexing with a MultiIndex and more advanced indexing features.

See the :ref:`Indexing and Selecting Data <indexing>` for general indexing documentation.

Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See :ref:`Returning a View versus Copy <indexing.view_versus_copy>`

Warning

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)

See the :ref:`cookbook<cookbook.selection>` for some advanced strategies

Hierarchical indexing (MultiIndex)

Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by "hierarchical" indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing :ref:`group by <groupby>` and :ref:`pivoting and reshaping data <reshaping>`, we'll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the :ref:`cookbook<cookbook.multi_index>` for some advanced strategies

Creating a MultiIndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex as an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo different ways to initialize MultiIndexes.

.. ipython:: python

   arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
   tuples = list(zip(*arrays))
   tuples

   index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
   index

   s = pd.Series(np.random.randn(8), index=index)
   s

When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.from_product function:

.. ipython:: python

   iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]
   pd.MultiIndex.from_product(iterables, names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:

.. ipython:: python

   arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
             np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]
   s = pd.Series(np.random.randn(8), index=arrays)
   s
   df = pd.DataFrame(np.random.randn(8, 4), index=arrays)
   df

All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves. If no names are provided, None will be assigned:

.. ipython:: python

   df.index.names

This index can back any axis of a pandas object, and the number of levels of the index is up to you:

.. ipython:: python

   df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
   df
   pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])

We've "sparsified" the higher levels of the indexes to make the console output a bit easier on the eyes.

It's worth keeping in mind that there's nothing preventing you from using tuples as atomic labels on an axis:

.. ipython:: python

   pd.Series(np.random.randn(8), index=tuples)

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in pandas.set_printoptions:

.. ipython:: python

   pd.set_option('display.multi_sparse', False)
   df
   pd.set_option('display.multi_sparse', True)

Reconstructing the level labels

The method get_level_values will return a vector of the labels for each location at a particular level:

.. ipython:: python

   index.get_level_values(0)
   index.get_level_values('second')

Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a "partial" label identifying a subgroup in the data. Partial selection "drops" levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame:

.. ipython:: python

   df['bar']
   df['bar', 'one']
   df['bar']['one']
   s['qux']

See :ref:`Cross-section with hierarchical index <advanced.xs>` for how to select on a deeper level.

Note

The repr of a MultiIndex shows ALL the defined levels of an index, even if the they are not actually used. When slicing an index, you may notice this. For example:

.. ipython:: python

   # original multi-index
   df.columns

   # sliced
   df[['foo','qux']].columns

This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see the actual used levels.

.. ipython:: python

   df[['foo','qux']].columns.values

   # for a specific level
   df[['foo','qux']].columns.get_level_values(0)

To reconstruct the multiindex with only the used levels

.. ipython:: python

   pd.MultiIndex.from_tuples(df[['foo','qux']].columns.values)

Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data alignment will work the same as an Index of tuples:

.. ipython:: python

   s + s[:-2]
   s + s[::2]

reindex can be called with another MultiIndex or even a list or array of tuples:

.. ipython:: python

   s.reindex(index[:3])
   s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])

Advanced indexing with hierarchical index

Syntactically integrating MultiIndex in advanced indexing with .loc is a bit challenging, but we've made every effort to do so. for example the following works as you would expect:

.. ipython:: python

   df = df.T
   df
   df.loc['bar']
   df.loc['bar', 'two']

"Partial" slicing also works quite nicely.

.. ipython:: python

   df.loc['baz':'foo']

You can slice with a 'range' of values, by providing a slice of tuples.

.. ipython:: python

   df.loc[('baz', 'two'):('qux', 'one')]
   df.loc[('baz', 'two'):'foo']

Passing a list of labels or tuples works similar to reindexing:

.. ipython:: python

   df.loc[[('bar', 'two'), ('qux', 'one')]]

Using slicers

.. versionadded:: 0.14.0

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see :ref:`Selection by Label <indexing.label>`, including slices, lists of labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

Warning

You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MuliIndex for the rows.

You should do this:

df.loc[(slice('A1','A3'),.....),:]

rather than this:

df.loc[(slice('A1','A3'),.....)]
.. ipython:: python

   def mklbl(prefix,n):
       return ["%s%s" % (prefix,i)  for i in range(n)]

   miindex = pd.MultiIndex.from_product([mklbl('A',4),
                                         mklbl('B',2),
                                         mklbl('C',4),
                                         mklbl('D',2)])
   micolumns = pd.MultiIndex.from_tuples([('a','foo'),('a','bar'),
                                          ('b','foo'),('b','bah')],
                                         names=['lvl0', 'lvl1'])
   dfmi = pd.DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
                       index=miindex,
                       columns=micolumns).sort_index().sort_index(axis=1)
   dfmi

Basic multi-index slicing using slices, lists, and labels.

.. ipython:: python

   dfmi.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]

You can use a pd.IndexSlice to have a more natural syntax using : rather than using slice(None)

.. ipython:: python

   idx = pd.IndexSlice
   dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

.. ipython:: python

   dfmi.loc['A1',(slice(None),'foo')]
   dfmi.loc[idx[:,:,['C1','C3']],idx[:,'foo']]

Using a boolean indexer you can provide selection related to the values.

.. ipython:: python

   mask = dfmi[('a','foo')]>200
   dfmi.loc[idx[mask,:,['C1','C3']],idx[:,'foo']]

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

.. ipython:: python

   dfmi.loc(axis=0)[:,:,['C1','C3']]

Furthermore you can set the values using these methods

.. ipython:: python

   df2 = dfmi.copy()
   df2.loc(axis=0)[:,:,['C1','C3']] = -10
   df2

You can use a right-hand-side of an alignable object as well.

.. ipython:: python

   df2 = dfmi.copy()
   df2.loc[idx[:,:,['C1','C3']],:] = df2*1000
   df2

Cross-section

The xs method of DataFrame additionally takes a level argument to make selecting data at a particular level of a MultiIndex easier.

.. ipython:: python

   df
   df.xs('one', level='second')

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[(slice(None),'one'),:]

You can also select on the columns with :meth:`~pandas.MultiIndex.xs`, by providing the axis argument

.. ipython:: python

   df = df.T
   df.xs('one', level='second', axis=1)

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[:,(slice(None),'one')]

:meth:`~pandas.MultiIndex.xs` also allows selection with multiple keys

.. ipython:: python

   df.xs(('one', 'bar'), level=('second', 'first'), axis=1)

.. ipython:: python

   # using the slicers (new in 0.14.0)
   df.loc[:,('bar','one')]

.. versionadded:: 0.13.0

You can pass drop_level=False to :meth:`~pandas.MultiIndex.xs` to retain the level that was selected

.. ipython:: python

   df.xs('one', level='second', axis=1, drop_level=False)

versus the result with drop_level=True (the default value)

.. ipython:: python

   df.xs('one', level='second', axis=1, drop_level=True)

.. ipython:: python
   :suppress:

   df = df.T

Advanced reindexing and alignment

The parameter level has been added to the reindex and align methods of pandas objects. This is useful to broadcast values across a level. For instance:

.. ipython:: python

   midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']],
                        labels=[[1,1,0,0],[1,0,1,0]])
   df = pd.DataFrame(np.random.randn(4,2), index=midx)
   df
   df2 = df.mean(level=0)
   df2
   df2.reindex(df.index, level=0)

   # aligning
   df_aligned, df2_aligned = df.align(df2, level=0)
   df_aligned
   df2_aligned


The swaplevel function can switch the order of two levels:

.. ipython:: python

   df[:5]
   df[:5].swaplevel(0, 1, axis=0)

The reorder_levels function generalizes the swaplevel function, allowing you to permute the hierarchical index levels in one step:

.. ipython:: python

   df[:5].reorder_levels([1,0], axis=0)

For MultiIndex-ed objects to be indexed & sliced effectively, they need to be sorted. As with any index, you can use sort_index.

.. ipython:: python

   import random; random.shuffle(tuples)
   s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
   s
   s.sort_index()
   s.sort_index(level=0)
   s.sort_index(level=1)

You may also pass a level name to sort_index if the MultiIndex levels are named.

.. ipython:: python

   s.index.set_names(['L1', 'L2'], inplace=True)
   s.sort_index(level='L1')
   s.sort_index(level='L2')

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

.. ipython:: python

   df.T.sort_index(level=1, axis=1)

Indexing will work even if the data are not sorted, but will be rather inefficient (and show a PerformanceWarning). It will also return a copy of the data rather than a view:

.. ipython:: python

   dfm = pd.DataFrame({'jim': [0, 0, 1, 1],
                       'joe': ['x', 'x', 'z', 'y'],
                       'jolie': np.random.rand(4)})
   dfm = dfm.set_index(['jim', 'joe'])
   dfm

In [4]: dfm.loc[(1, 'z')]
PerformanceWarning: indexing past lexsort depth may impact performance.

Out[4]:
           jolie
jim joe
1   z    0.64094

Furthermore if you try to index something that is not fully lexsorted, this can raise:

In [5]: dfm.loc[(0,'y'):(1, 'z')]
UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'

The is_lexsorted() method on an Index show if the index is sorted, and the lexsort_depth property returns the sort depth:

.. ipython:: python

   dfm.index.is_lexsorted()
   dfm.index.lexsort_depth

.. ipython:: python

   dfm = dfm.sort_index()
   dfm
   dfm.index.is_lexsorted()
   dfm.index.lexsort_depth

And now selection works as expected.

.. ipython:: python

   dfm.loc[(0,'y'):(1, 'z')]

Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the take method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. take will also accept negative integers as relative positions to the end of the object.

.. ipython:: python

   index = pd.Index(np.random.randint(0, 1000, 10))
   index

   positions = [0, 9, 3]

   index[positions]
   index.take(positions)

   ser = pd.Series(np.random.randn(10))

   ser.iloc[positions]
   ser.take(positions)

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

.. ipython:: python

   frm = pd.DataFrame(np.random.randn(5, 3))

   frm.take([1, 4, 3])

   frm.take([0, 2], axis=1)

It is important to note that the take method on pandas objects are not intended to work on boolean indices and may return unexpected results.

.. ipython:: python

   arr = np.random.randn(10)
   arr.take([False, False, True, True])
   arr[[0, 1]]

   ser = pd.Series(np.random.randn(10))
   ser.take([False, False, True, True])
   ser.iloc[[0, 1]]

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.

.. ipython::

   arr = np.random.randn(10000, 5)
   indexer = np.arange(10000)
   random.shuffle(indexer)

   timeit arr[indexer]
   timeit arr.take(indexer, axis=0)

   ser = pd.Series(arr[:, 0])
   timeit ser.iloc[indexer]
   timeit ser.take(indexer)

Index Types

We have discussed MultiIndex in the previous sections pretty extensively. DatetimeIndex and PeriodIndex are shown :ref:`here <timeseries.overview>`. TimedeltaIndex are :ref:`here <timedeltas.timedeltas>`.

In the following sub-sections we will highlite some other index types.

CategoricalIndex

.. versionadded:: 0.16.1

We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series with a category dtype would convert this to regular object-based Index.

.. ipython:: python

   df = pd.DataFrame({'A': np.arange(6),
                      'B': list('aabbca')})
   df['B'] = df['B'].astype('category', categories=list('cab'))
   df
   df.dtypes
   df.B.cat.categories

Setting the index, will create create a CategoricalIndex

.. ipython:: python

   df2 = df.set_index('B')
   df2.index

Indexing with __getitem__/.iloc/.loc works similarly to an Index with duplicates. The indexers MUST be in the category or the operation will raise.

.. ipython:: python

   df2.loc['a']

These PRESERVE the CategoricalIndex

.. ipython:: python

   df2.loc['a'].index

Sorting will order by the order of the categories

.. ipython:: python

   df2.sort_index()

Groupby operations on the index will preserve the index nature as well

.. ipython:: python

   df2.groupby(level=0).sum()
   df2.groupby(level=0).sum().index

Reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the PASSED Categorical dtype. This allows one to arbitrarly index these even with values NOT in the categories, similarly to how you can reindex ANY pandas index.

.. ipython :: python

   df2.reindex(['a','e'])
   df2.reindex(['a','e']).index
   df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
   df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index

Warning

Reshaping and Comparison operations on a CategoricalIndex must have the same categories or a TypeError will be raised.

In [9]: df3 = pd.DataFrame({'A' : np.arange(6),
                            'B' : pd.Series(list('aabbca')).astype('category')})

In [11]: df3 = df3.set_index('B')

In [11]: df3.index
Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u'b', u'c'], ordered=False, name=u'B', dtype='category')

In [12]: pd.concat([df2, df3]
TypeError: categories must match existing categories when appending

Int64Index and RangeIndex

Warning

Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see :ref:`here <whatsnew_0180.float_indexers>`.

Int64Index is a fundamental basic index in pandas. This is an Immutable array implementing an ordered, sliceable set. Prior to 0.18.0, the Int64Index would provide the default index for all NDFrame objects.

RangeIndex is a sub-class of Int64Index added in version 0.18.0, now providing the default index for all NDFrame objects. RangeIndex is an optimized version of Int64Index that can represent a monotonic ordered set. These are analagous to python range types.

Float64Index

Note

As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.

.. versionadded:: 0.13.0

By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same.

.. ipython:: python

   indexf = pd.Index([1.5, 2, 3, 4.5, 5])
   indexf
   sf = pd.Series(range(5), index=indexf)
   sf

Scalar selection for [],.loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

.. ipython:: python

   sf[3]
   sf[3.0]
   sf.loc[3]
   sf.loc[3.0]

The only positional indexing is via iloc

.. ipython:: python

   sf.iloc[3]

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [],ix,loc and ALWAYS positional with iloc

.. ipython:: python

   sf[2:4]
   sf.loc[2:4]
   sf.iloc[2:4]

In float indexes, slicing using floats is allowed

.. ipython:: python

   sf[2.1:4.6]
   sf.loc[2.1:4.6]

In non-float indexes, slicing using floats will raise a TypeError

In [1]: pd.Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: pd.Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Warning

Using a scalar float indexer for .iloc has been removed in 0.18.0, so the following will raise a TypeError

In [3]: pd.Series(range(5)).iloc[3.0]
TypeError: cannot do positional indexing on <class 'pandas.indexes.range.RangeIndex'> with these indexers [3.0] of <type 'float'>

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

.. ipython:: python

   dfir = pd.concat([pd.DataFrame(np.random.randn(5,2),
                                  index=np.arange(5) * 250.0,
                                  columns=list('AB')),
                     pd.DataFrame(np.random.randn(6,2),
                                  index=np.arange(4,10) * 250.1,
                                  columns=list('AB'))])
   dfir

Selection operations then will always work on a value basis, for all selection operators.

.. ipython:: python

   dfir[0:1000.4]
   dfir.loc[0:1001,'A']
   dfir.loc[1000.4]

You could then easily pick out the first 1 second (1000 ms) of data then.

.. ipython:: python

   dfir[0:1000]

Of course if you need integer based selection, then use iloc

.. ipython:: python

   dfir.iloc[0:5]

Miscellaneous indexing FAQ

Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .loc. The following code will generate exceptions:

s = pd.Series(range(5))
s[-1]
df = pd.DataFrame(np.random.randn(5, 4))
df
df.loc[-2:]

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop "falling back" on position-based indexing).

Non-monotonic indexes require exact matches

If the index of a Series or DataFrame is monotonically increasing or decreasing, then the bounds of a label-based slice can be outside the range of the index, much like slice indexing a normal Python list. Monotonicity of an index can be tested with the is_monotonic_increasing and is_monotonic_decreasing attributes.

.. ipython:: python

    df = pd.DataFrame(index=[2,3,3,4,5], columns=['data'], data=list(range(5)))
    df.index.is_monotonic_increasing

    # no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4:
    df.loc[0:4, :]

    # slice is are outside the index, so empty DataFrame is returned
    df.loc[13:15, :]

On the other hand, if the index is not monotonic, then both slice bounds must be unique members of the index.

.. ipython:: python

    df = pd.DataFrame(index=[2,3,1,4,3,5], columns=['data'], data=list(range(6)))
    df.index.is_monotonic_increasing

    # OK because 2 and 4 are in the index
    df.loc[2:4, :]

# 0 is not in the index
In [9]: df.loc[0:4, :]
KeyError: 0

# 3 is not a unique label
In [11]: df.loc[2:3, :]
KeyError: 'Cannot get right slice bound for non-unique label: 3'

Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the "successor" or next element after a particular label in an index. For example, consider the following Series:

.. ipython:: python

   s = pd.Series(np.random.randn(6), index=list('abcdef'))
   s

Suppose we wished to slice from c to e, using integers this would be

.. ipython:: python

   s[2:5]

However, if you only had c and e, determining the next element in the index can be somewhat complicated. For example, the following does not work:

s.loc['c':'e'+1]

A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design design to make label-based slicing include both endpoints:

.. ipython:: python

    s.loc['c':'e']

This is most definitely a "practicality beats purity" sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.

Indexing potentially changes underlying Series dtype

The different indexing operation can potentially change the dtype of a Series.

.. ipython:: python

   series1 = pd.Series([1, 2, 3])
   series1.dtype
   res = series1[[0,4]]
   res.dtype
   res

.. ipython:: python

   series2 = pd.Series([True])
   series2.dtype
   res = series2.reindex_like(series1)
   res.dtype
   res

This is because the (re)indexing operations above silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as numpy.logical_and.

See the this old issue for a more detailed discussion.