You are given an integer array nums
and an integer k
. Find the maximum subarray sum of all the subarrays of nums
that meet the following conditions:
- The length of the subarray is
k
, and - All the elements of the subarray are distinct.
Return the maximum subarray sum of all the subarrays that meet the conditions. If no subarray meets the conditions, return 0
.
A subarray is a contiguous non-empty sequence of elements within an array.
Input: nums = [1,5,4,2,9,9,9], k = 3 Output: 15 Explanation: The subarrays of nums with length 3 are: - [1,5,4] which meets the requirements and has a sum of 10. - [5,4,2] which meets the requirements and has a sum of 11. - [4,2,9] which meets the requirements and has a sum of 15. - [2,9,9] which does not meet the requirements because the element 9 is repeated. - [9,9,9] which does not meet the requirements because the element 9 is repeated. We return 15 because it is the maximum subarray sum of all the subarrays that meet the conditions
Input: nums = [4,4,4], k = 3 Output: 0 Explanation: The subarrays of nums with length 3 are: - [4,4,4] which does not meet the requirements because the element 4 is repeated. We return 0 because no subarrays meet the conditions.
1 <= k <= nums.length <= 105
1 <= nums[i] <= 105
use std::collections::HashMap;
impl Solution {
pub fn maximum_subarray_sum(nums: Vec<i32>, k: i32) -> i64 {
let k = k as usize;
let mut count = HashMap::new();
let mut subarray_sum = 0;
let mut i = 0;
let mut ret = 0;
for j in 0..k {
subarray_sum += nums[j] as i64;
*count.entry(nums[j]).or_insert(0) += 1;
}
if count.len() == k {
ret = subarray_sum;
}
for j in k..nums.len() {
subarray_sum += nums[j] as i64;
subarray_sum -= nums[i] as i64;
*count.entry(nums[j]).or_insert(0) += 1;
*count.get_mut(&nums[i]).unwrap() -= 1;
if count[&nums[i]] == 0 {
count.remove(&nums[i]);
}
if count.len() == k {
ret = ret.max(subarray_sum);
}
i += 1;
}
ret
}
}