Given two sorted 0-indexed integer arrays nums1
and nums2
as well as an integer k
, return the kth
(1-based) smallest product of nums1[i] * nums2[j]
where 0 <= i < nums1.length
and 0 <= j < nums2.length
.
Input: nums1 = [2,5], nums2 = [3,4], k = 2 Output: 8 Explanation: The 2 smallest products are: - nums1[0] * nums2[0] = 2 * 3 = 6 - nums1[0] * nums2[1] = 2 * 4 = 8 The 2nd smallest product is 8.
Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6 Output: 0 Explanation: The 6 smallest products are: - nums1[0] * nums2[1] = (-4) * 4 = -16 - nums1[0] * nums2[0] = (-4) * 2 = -8 - nums1[1] * nums2[1] = (-2) * 4 = -8 - nums1[1] * nums2[0] = (-2) * 2 = -4 - nums1[2] * nums2[0] = 0 * 2 = 0 - nums1[2] * nums2[1] = 0 * 4 = 0 The 6th smallest product is 0.
Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3 Output: -6 Explanation: The 3 smallest products are: - nums1[0] * nums2[4] = (-2) * 5 = -10 - nums1[0] * nums2[3] = (-2) * 4 = -8 - nums1[4] * nums2[0] = 2 * (-3) = -6 The 3rd smallest product is -6.
1 <= nums1.length, nums2.length <= 5 * 104
-105 <= nums1[i], nums2[j] <= 105
1 <= k <= nums1.length * nums2.length
nums1
andnums2
are sorted.
import math
class Solution:
def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int:
if len(nums2) < len(nums1):
nums1, nums2 = nums2, nums1
lo = min(nums1[0] * nums2[0], nums1[0] * nums2[-1],
nums1[-1] * nums2[0], nums1[-1] * nums2[-1])
hi = max(nums1[0] * nums2[0], nums1[0] * nums2[-1],
nums1[-1] * nums2[0], nums1[-1] * nums2[-1])
while lo < hi:
mid = (lo + hi) // 2
count = 0
for i in range(len(nums1)):
if nums1[i] == 0:
count += len(nums2) if mid >= 0 else 0
elif nums1[i] > 0:
count += bisect.bisect(nums2, mid // nums1[i])
else:
count += len(nums2) - bisect.bisect(nums2,
math.ceil(mid / nums1[i]) - 1)
if count < k:
lo = mid + 1
else:
hi = mid
return hi