Skip to content

Latest commit

 

History

History
81 lines (68 loc) · 2.62 KB

File metadata and controls

81 lines (68 loc) · 2.62 KB

2040. Kth Smallest Product of Two Sorted Arrays

Given two sorted 0-indexed integer arrays nums1 and nums2 as well as an integer k, return the kth (1-based) smallest product of nums1[i] * nums2[j] where 0 <= i < nums1.length and 0 <= j < nums2.length.

Example 1:

Input: nums1 = [2,5], nums2 = [3,4], k = 2
Output: 8
Explanation: The 2 smallest products are:
- nums1[0] * nums2[0] = 2 * 3 = 6
- nums1[0] * nums2[1] = 2 * 4 = 8
The 2nd smallest product is 8.

Example 2:

Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
Output: 0
Explanation: The 6 smallest products are:
- nums1[0] * nums2[1] = (-4) * 4 = -16
- nums1[0] * nums2[0] = (-4) * 2 = -8
- nums1[1] * nums2[1] = (-2) * 4 = -8
- nums1[1] * nums2[0] = (-2) * 2 = -4
- nums1[2] * nums2[0] = 0 * 2 = 0
- nums1[2] * nums2[1] = 0 * 4 = 0
The 6th smallest product is 0.

Example 3:

Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
Output: -6
Explanation: The 3 smallest products are:
- nums1[0] * nums2[4] = (-2) * 5 = -10
- nums1[0] * nums2[3] = (-2) * 4 = -8
- nums1[4] * nums2[0] = 2 * (-3) = -6
The 3rd smallest product is -6.

Constraints:

  • 1 <= nums1.length, nums2.length <= 5 * 104
  • -105 <= nums1[i], nums2[j] <= 105
  • 1 <= k <= nums1.length * nums2.length
  • nums1 and nums2 are sorted.

Solutions (Python)

1. Solution

import math


class Solution:
    def kthSmallestProduct(self, nums1: List[int], nums2: List[int], k: int) -> int:
        if len(nums2) < len(nums1):
            nums1, nums2 = nums2, nums1

        lo = min(nums1[0] * nums2[0], nums1[0] * nums2[-1],
                 nums1[-1] * nums2[0], nums1[-1] * nums2[-1])
        hi = max(nums1[0] * nums2[0], nums1[0] * nums2[-1],
                 nums1[-1] * nums2[0], nums1[-1] * nums2[-1])

        while lo < hi:
            mid = (lo + hi) // 2
            count = 0

            for i in range(len(nums1)):
                if nums1[i] == 0:
                    count += len(nums2) if mid >= 0 else 0
                elif nums1[i] > 0:
                    count += bisect.bisect(nums2, mid // nums1[i])
                else:
                    count += len(nums2) - bisect.bisect(nums2,
                                                        math.ceil(mid / nums1[i]) - 1)

            if count < k:
                lo = mid + 1
            else:
                hi = mid

        return hi