Skip to content

Latest commit

 

History

History
111 lines (101 loc) · 4.46 KB

File metadata and controls

111 lines (101 loc) · 4.46 KB

1293. Shortest Path in a Grid with Obstacles Elimination

You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You can move up, down, left, or right from and to an empty cell in one step.

Return the minimum number of steps to walk from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1) given that you can eliminate at most k obstacles. If it is not possible to find such walk return -1.

Example 1:

Input: grid = [[0,0,0],[1,1,0],[0,0,0],[0,1,1],[0,0,0]], k = 1
Output: 6
Explanation:
The shortest path without eliminating any obstacle is 10.
The shortest path with one obstacle elimination at position (3,2) is 6. Such path is (0,0) -> (0,1) -> (0,2) -> (1,2) -> (2,2) -> (3,2) -> (4,2).

Example 2:

Input: grid = [[0,1,1],[1,1,1],[1,0,0]], k = 1
Output: -1
Explanation: We need to eliminate at least two obstacles to find such a walk.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 40
  • 1 <= k <= m * n
  • grid[i][j] is either 0 or 1.
  • grid[0][0] == grid[m - 1][n - 1] == 0

Solutions (Rust)

1. Solution

use std::collections::HashMap;
use std::collections::VecDeque;

impl Solution {
    pub fn shortest_path(grid: Vec<Vec<i32>>, k: i32) -> i32 {
        let (m, n) = (grid.len(), grid[0].len());
        let mut visited = HashMap::from([((0, 0), 0)]);
        let mut deque = VecDeque::from([(0, 0, 0, 0)]);

        while let Some((i, j, obstacles, steps)) = deque.pop_front() {
            if i == m - 1 && j == n - 1 {
                return steps;
            }

            if i > 0 {
                if grid[i - 1][j] == 1
                    && obstacles + 1 <= k
                    && *visited.get(&(i - 1, j)).unwrap_or(&i32::MAX) > obstacles + 1
                {
                    visited.insert((i - 1, j), obstacles + 1);
                    deque.push_back((i - 1, j, obstacles + 1, steps + 1));
                } else if grid[i - 1][j] == 0
                    && *visited.get(&(i - 1, j)).unwrap_or(&i32::MAX) > obstacles
                {
                    visited.insert((i - 1, j), obstacles);
                    deque.push_back((i - 1, j, obstacles, steps + 1));
                }
            }
            if i < m - 1 {
                if grid[i + 1][j] == 1
                    && obstacles + 1 <= k
                    && *visited.get(&(i + 1, j)).unwrap_or(&i32::MAX) > obstacles + 1
                {
                    visited.insert((i + 1, j), obstacles + 1);
                    deque.push_back((i + 1, j, obstacles + 1, steps + 1));
                } else if grid[i + 1][j] == 0
                    && *visited.get(&(i + 1, j)).unwrap_or(&i32::MAX) > obstacles
                {
                    visited.insert((i + 1, j), obstacles);
                    deque.push_back((i + 1, j, obstacles, steps + 1));
                }
            }
            if j > 0 {
                if grid[i][j - 1] == 1
                    && obstacles + 1 <= k
                    && *visited.get(&(i, j - 1)).unwrap_or(&i32::MAX) > obstacles + 1
                {
                    visited.insert((i, j - 1), obstacles + 1);
                    deque.push_back((i, j - 1, obstacles + 1, steps + 1));
                } else if grid[i][j - 1] == 0
                    && *visited.get(&(i, j - 1)).unwrap_or(&i32::MAX) > obstacles
                {
                    visited.insert((i, j - 1), obstacles);
                    deque.push_back((i, j - 1, obstacles, steps + 1));
                }
            }
            if j < n - 1 {
                if grid[i][j + 1] == 1
                    && obstacles + 1 <= k
                    && *visited.get(&(i, j + 1)).unwrap_or(&i32::MAX) > obstacles + 1
                {
                    visited.insert((i, j + 1), obstacles + 1);
                    deque.push_back((i, j + 1, obstacles + 1, steps + 1));
                } else if grid[i][j + 1] == 0
                    && *visited.get(&(i, j + 1)).unwrap_or(&i32::MAX) > obstacles
                {
                    visited.insert((i, j + 1), obstacles);
                    deque.push_back((i, j + 1, obstacles, steps + 1));
                }
            }
        }

        -1
    }
}