Given an array A
of integers, we must modify the array in the following way: we choose an i
and replace A[i]
with -A[i]
, and we repeat this process K
times in total. (We may choose the same index i
multiple times.)
Return the largest possible sum of the array after modifying it in this way.
Input: A = [4,2,3], K = 1 Output: 5 Explanation: Choose indices (1,) and A becomes [4,-2,3].
Input: A = [3,-1,0,2], K = 3 Output: 6 Explanation: Choose indices (1, 2, 2) and A becomes [3,1,0,2].
Input: A = [2,-3,-1,5,-4], K = 2 Output: 13 Explanation: Choose indices (1, 4) and A becomes [2,3,-1,5,4].
1 <= A.length <= 10000
1 <= K <= 10000
-100 <= A[i] <= 100
impl Solution {
pub fn largest_sum_after_k_negations(a: Vec<i32>, k: i32) -> i32 {
let mut k = k;
let mut a = a;
a.sort_unstable();
for i in 0..a.len() {
if a[i] < 0 && k > 0 {
a[i] = -a[i];
k -= 1;
} else if k % 2 == 0 {
break;
} else if i > 0 && a[i] > a[i - 1] {
a[i - 1] = -a[i - 1];
break;
} else {
a[i] = -a[i];
break;
}
}
a.iter().sum()
}
}
impl Solution {
pub fn largest_sum_after_k_negations(a: Vec<i32>, k: i32) -> i32 {
let mut k = k;
let mut cnt_neg = [0; 101];
let mut sum = 0;
let mut min_abs = 100;
for n in a {
if n >= 0 {
sum += n;
} else {
cnt_neg[-n as usize] += 1;
}
min_abs = min_abs.min(n.abs());
}
for i in (1..101).rev() {
if k > 0 {
if cnt_neg[i as usize] <= k {
sum += i * cnt_neg[i as usize];
k -= cnt_neg[i as usize];
} else {
sum += i * (2 * k - cnt_neg[i as usize]);
k = 0;
}
} else {
sum += -i * cnt_neg[i as usize];
}
}
if k % 2 == 1 {
sum -= 2 * min_abs;
}
sum
}
}