Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Input: ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output: [null, null, null, 1, null, -1, 3, null, -1, 3, 4] Explanation: // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3
1 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
class ListNode:
def __init__(self, key=-1, val=0, prev=None, next=None):
self.key = key
self.val = val
self.prev = prev
self.next = next
self.count = 0
class LFUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {}
self.headtails = {}
self.hair = ListNode()
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
head, tail = self.headtails[node.count]
if head.key == node.key and tail.key == node.key:
self.headtails.pop(node.count)
elif head.key == node.key:
self.headtails[node.count][0] = node.next
elif tail.key == node.key:
self.headtails[node.count][1] = node.prev
node.prev.next = node.next
if node.next is not None:
node.next.prev = node.prev
node.count += 1
if tail.next is None or tail.next.count > node.count:
if tail.key == node.key:
tail = node.prev
self.headtails[node.count] = [node, node]
else:
tail = self.headtails[node.count][1]
self.headtails[node.count][1] = node
node.prev = tail
node.next = tail.next
tail.next = node
if node.next is not None:
node.next.prev = node
return node.val
def put(self, key: int, value: int) -> None:
if key not in self.cache:
if len(self.cache) == self.capacity:
head, tail = self.headtails[self.hair.next.count]
self.cache.pop(head.key)
if head.key == tail.key:
self.headtails.pop(head.count)
else:
self.headtails[head.count][0] = head.next
self.hair.next = head.next
if head.next is not None:
head.next.prev = self.hair
node = ListNode(key, value, self.hair, self.hair.next)
self.cache[key] = node
self.headtails[0] = [node, node]
self.hair.next = node
if node.next is not None:
node.next.prev = node
self.cache[key].val = value
self.get(key)
# Your LFUCache object will be instantiated and called as such:
# obj = LFUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)