Skip to content

Commit a40ce3b

Browse files
committed
DOC: Document pandas.core.dtypes.common
Closes pandas-devgh-15895.
1 parent 20fda22 commit a40ce3b

File tree

1 file changed

+109
-3
lines changed

1 file changed

+109
-3
lines changed

pandas/core/dtypes/common.py

+109-3
Original file line numberDiff line numberDiff line change
@@ -82,20 +82,102 @@ def _ensure_categorical(arr):
8282

8383

8484
def is_object_dtype(arr_or_dtype):
85+
"""
86+
Check whether an object or dtype is of the object dtype.
87+
88+
Parameters
89+
----------
90+
arr_or_dtype : array-like, dtype
91+
The array-like or dtype to check.
92+
93+
Returns
94+
-------
95+
is_object_dtype : Whether or not the object or dtype is of
96+
the object dtype.
97+
98+
Examples
99+
--------
100+
>>> is_object_dtype(object)
101+
True
102+
>>> is_object_dtype(int)
103+
False
104+
>>> is_object_dtype(np.array([], dtype=object))
105+
True
106+
>>> is_object_dtype(np.array([], dtype=int))
107+
False
108+
>>> is_object_dtype([1, 2, 3])
109+
False
110+
"""
111+
85112
if arr_or_dtype is None:
86113
return False
87114
tipo = _get_dtype_type(arr_or_dtype)
88115
return issubclass(tipo, np.object_)
89116

90117

91118
def is_sparse(array):
92-
""" return if we are a sparse array """
119+
"""
120+
Check whether an array-like is a pandas sparse array.
121+
122+
Parameters
123+
----------
124+
array : array-like
125+
The array-like to check.
126+
127+
Returns
128+
-------
129+
is_sparse : Whether or not the array-like is a pandas sparse array.
130+
131+
Examples
132+
--------
133+
>>> is_sparse(np.array([1, 2, 3]))
134+
False
135+
>>> is_sparse(pd.SparseArray([1, 2, 3]))
136+
True
137+
>>> is_sparse(pd.SparseSeries([1, 2, 3]))
138+
True
139+
140+
This function checks only for pandas sparse array instances, so
141+
sparse arrays from other libraries will return False.
142+
>>> from scipy.sparse import bsr_matrix
143+
>>> is_sparse(bsr_matrix([1, 2, 3]))
144+
False
145+
"""
146+
93147
return isinstance(array, (ABCSparseArray, ABCSparseSeries))
94148

95149

96150
def is_scipy_sparse(array):
97-
""" return if we are a scipy.sparse.spmatrix """
151+
"""
152+
Check whether an array-like is a scipy.sparse.spmatrix instance.
153+
154+
Parameters
155+
----------
156+
array : array-like
157+
The array-like to check.
158+
159+
Returns
160+
-------
161+
is_scipy_sparse : Whether or not the array-like is a
162+
scipy.sparse.spmatrix instance.
163+
164+
Notes
165+
-----
166+
If scipy is not installed, this function will always return False.
167+
168+
Examples
169+
--------
170+
>>> from scipy.sparse import bsr_matrix
171+
>>> is_scipy_sparse(bsr_matrix([1, 2, 3]))
172+
True
173+
>>> is_scipy_sparse(pd.SparseArray([1, 2, 3]))
174+
False
175+
>>> is_scipy_sparse(pd.SparseSeries([1, 2, 3]))
176+
False
177+
"""
178+
98179
global _is_scipy_sparse
180+
99181
if _is_scipy_sparse is None:
100182
try:
101183
from scipy.sparse import issparse as _is_scipy_sparse
@@ -105,7 +187,31 @@ def is_scipy_sparse(array):
105187

106188

107189
def is_categorical(array):
108-
""" return if we are a categorical possibility """
190+
"""
191+
Check whether an array-like is a Categorical instance.
192+
193+
Parameters
194+
----------
195+
array : array-like
196+
The array-like to check.
197+
198+
Returns
199+
-------
200+
is_categorical : Whether or not the array-like is a Categorical instance.
201+
202+
Examples
203+
--------
204+
>>> is_categorical([1, 2, 3])
205+
False
206+
207+
Categoricals and Series Categoricals will return True.
208+
>>> cat = pd.Categorical([1, 2, 3])
209+
>>> is_categorical(cat)
210+
True
211+
>>> is_categorical(pd.Series(cat))
212+
True
213+
"""
214+
109215
return isinstance(array, ABCCategorical) or is_categorical_dtype(array)
110216

111217

0 commit comments

Comments
 (0)