forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathna_values.py
332 lines (272 loc) · 11 KB
/
na_values.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
"""
Tests that NA values are properly handled during
parsing for all of the parsers defined in parsers.py
"""
import numpy as np
from numpy import nan
import pandas.io.common as com
import pandas.util.testing as tm
from pandas import DataFrame, Index, MultiIndex
from pandas.compat import StringIO, range
class NAvaluesTests(object):
def test_string_nas(self):
data = """A,B,C
a,b,c
d,,f
,g,h
"""
result = self.read_csv(StringIO(data))
expected = DataFrame([['a', 'b', 'c'],
['d', np.nan, 'f'],
[np.nan, 'g', 'h']],
columns=['A', 'B', 'C'])
tm.assert_frame_equal(result, expected)
def test_detect_string_na(self):
data = """A,B
foo,bar
NA,baz
NaN,nan
"""
expected = np.array([['foo', 'bar'], [nan, 'baz'], [nan, nan]],
dtype=np.object_)
df = self.read_csv(StringIO(data))
tm.assert_numpy_array_equal(df.values, expected)
def test_non_string_na_values(self):
# see gh-3611: with an odd float format, we can't match
# the string '999.0' exactly but still need float matching
nice = """A,B
-999,1.2
2,-999
3,4.5
"""
ugly = """A,B
-999,1.200
2,-999.000
3,4.500
"""
na_values_param = [['-999.0', '-999'],
[-999, -999.0],
[-999.0, -999],
['-999.0'], ['-999'],
[-999.0], [-999]]
expected = DataFrame([[np.nan, 1.2], [2.0, np.nan],
[3.0, 4.5]], columns=['A', 'B'])
for data in (nice, ugly):
for na_values in na_values_param:
out = self.read_csv(StringIO(data), na_values=na_values)
tm.assert_frame_equal(out, expected)
def test_default_na_values(self):
_NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN',
'#N/A', 'N/A', 'n/a', 'NA', '#NA', 'NULL', 'null',
'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', ''])
assert _NA_VALUES == com._NA_VALUES
nv = len(_NA_VALUES)
def f(i, v):
if i == 0:
buf = ''
elif i > 0:
buf = ''.join([','] * i)
buf = "{0}{1}".format(buf, v)
if i < nv - 1:
buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1)))
return buf
data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)]))
expected = DataFrame(np.nan, columns=range(nv), index=range(nv))
df = self.read_csv(data, header=None)
tm.assert_frame_equal(df, expected)
def test_custom_na_values(self):
data = """A,B,C
ignore,this,row
1,NA,3
-1.#IND,5,baz
7,8,NaN
"""
expected = np.array([[1., nan, 3],
[nan, 5, nan],
[7, 8, nan]])
df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1])
tm.assert_numpy_array_equal(df.values, expected)
df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'],
skiprows=[1])
tm.assert_numpy_array_equal(df2.values, expected)
df3 = self.read_table(StringIO(data), sep=',', na_values='baz',
skiprows=[1])
tm.assert_numpy_array_equal(df3.values, expected)
def test_bool_na_values(self):
data = """A,B,C
True,False,True
NA,True,False
False,NA,True"""
result = self.read_csv(StringIO(data))
expected = DataFrame({'A': np.array([True, nan, False], dtype=object),
'B': np.array([False, True, nan], dtype=object),
'C': [True, False, True]})
tm.assert_frame_equal(result, expected)
def test_na_value_dict(self):
data = """A,B,C
foo,bar,NA
bar,foo,foo
foo,bar,NA
bar,foo,foo"""
df = self.read_csv(StringIO(data),
na_values={'A': ['foo'], 'B': ['bar']})
expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'],
'B': [np.nan, 'foo', np.nan, 'foo'],
'C': [np.nan, 'foo', np.nan, 'foo']})
tm.assert_frame_equal(df, expected)
data = """\
a,b,c,d
0,NA,1,5
"""
xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0])
xp.index.name = 'a'
df = self.read_csv(StringIO(data), na_values={}, index_col=0)
tm.assert_frame_equal(df, xp)
xp = DataFrame({'b': [np.nan], 'd': [5]},
MultiIndex.from_tuples([(0, 1)]))
xp.index.names = ['a', 'c']
df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2])
tm.assert_frame_equal(df, xp)
xp = DataFrame({'b': [np.nan], 'd': [5]},
MultiIndex.from_tuples([(0, 1)]))
xp.index.names = ['a', 'c']
df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c'])
tm.assert_frame_equal(df, xp)
def test_na_values_keep_default(self):
data = """\
One,Two,Three
a,1,one
b,2,two
,3,three
d,4,nan
e,5,five
nan,6,
g,7,seven
"""
df = self.read_csv(StringIO(data))
xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'],
'Two': [1, 2, 3, 4, 5, 6, 7],
'Three': ['one', 'two', 'three', np.nan, 'five',
np.nan, 'seven']})
tm.assert_frame_equal(xp.reindex(columns=df.columns), df)
df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []},
keep_default_na=False)
xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'],
'Two': [1, 2, 3, 4, 5, 6, 7],
'Three': ['one', 'two', 'three', 'nan', 'five',
'', 'seven']})
tm.assert_frame_equal(xp.reindex(columns=df.columns), df)
df = self.read_csv(
StringIO(data), na_values=['a'], keep_default_na=False)
xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'],
'Two': [1, 2, 3, 4, 5, 6, 7],
'Three': ['one', 'two', 'three', 'nan', 'five', '',
'seven']})
tm.assert_frame_equal(xp.reindex(columns=df.columns), df)
df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []})
xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'],
'Two': [1, 2, 3, 4, 5, 6, 7],
'Three': ['one', 'two', 'three', np.nan, 'five',
np.nan, 'seven']})
tm.assert_frame_equal(xp.reindex(columns=df.columns), df)
# see gh-4318: passing na_values=None and
# keep_default_na=False yields 'None' as a na_value
data = """\
One,Two,Three
a,1,None
b,2,two
,3,None
d,4,nan
e,5,five
nan,6,
g,7,seven
"""
df = self.read_csv(
StringIO(data), keep_default_na=False)
xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'],
'Two': [1, 2, 3, 4, 5, 6, 7],
'Three': ['None', 'two', 'None', 'nan', 'five', '',
'seven']})
tm.assert_frame_equal(xp.reindex(columns=df.columns), df)
def test_na_values_na_filter_override(self):
data = """\
A,B
1,A
nan,B
3,C
"""
expected = DataFrame([[1, 'A'], [np.nan, np.nan], [3, 'C']],
columns=['A', 'B'])
out = self.read_csv(StringIO(data), na_values=['B'], na_filter=True)
tm.assert_frame_equal(out, expected)
expected = DataFrame([['1', 'A'], ['nan', 'B'], ['3', 'C']],
columns=['A', 'B'])
out = self.read_csv(StringIO(data), na_values=['B'], na_filter=False)
tm.assert_frame_equal(out, expected)
def test_na_trailing_columns(self):
data = """Date,Currenncy,Symbol,Type,Units,UnitPrice,Cost,Tax
2012-03-14,USD,AAPL,BUY,1000
2012-05-12,USD,SBUX,SELL,500"""
result = self.read_csv(StringIO(data))
assert result['Date'][1] == '2012-05-12'
assert result['UnitPrice'].isna().all()
def test_na_values_scalar(self):
# see gh-12224
names = ['a', 'b']
data = '1,2\n2,1'
expected = DataFrame([[np.nan, 2.0], [2.0, np.nan]],
columns=names)
out = self.read_csv(StringIO(data), names=names, na_values=1)
tm.assert_frame_equal(out, expected)
expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]],
columns=names)
out = self.read_csv(StringIO(data), names=names,
na_values={'a': 2, 'b': 1})
tm.assert_frame_equal(out, expected)
def test_na_values_dict_aliasing(self):
na_values = {'a': 2, 'b': 1}
na_values_copy = na_values.copy()
names = ['a', 'b']
data = '1,2\n2,1'
expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names)
out = self.read_csv(StringIO(data), names=names, na_values=na_values)
tm.assert_frame_equal(out, expected)
tm.assert_dict_equal(na_values, na_values_copy)
def test_na_values_dict_col_index(self):
# see gh-14203
data = 'a\nfoo\n1'
na_values = {0: 'foo'}
out = self.read_csv(StringIO(data), na_values=na_values)
expected = DataFrame({'a': [np.nan, 1]})
tm.assert_frame_equal(out, expected)
def test_na_values_uint64(self):
# see gh-14983
na_values = [2**63]
data = str(2**63) + '\n' + str(2**63 + 1)
expected = DataFrame([str(2**63), str(2**63 + 1)])
out = self.read_csv(StringIO(data), header=None, na_values=na_values)
tm.assert_frame_equal(out, expected)
data = str(2**63) + ',1' + '\n,2'
expected = DataFrame([[str(2**63), 1], ['', 2]])
out = self.read_csv(StringIO(data), header=None)
tm.assert_frame_equal(out, expected)
def test_empty_na_values_no_default_with_index(self):
# see gh-15835
data = "a,1\nb,2"
expected = DataFrame({'1': [2]}, index=Index(["b"], name="a"))
out = self.read_csv(StringIO(data), keep_default_na=False, index_col=0)
tm.assert_frame_equal(out, expected)
def test_no_na_filter_on_index(self):
# see gh-5239
data = "a,b,c\n1,,3\n4,5,6"
# Don't parse NA-values in index when na_filter=False.
out = self.read_csv(StringIO(data), index_col=[1], na_filter=False)
expected = DataFrame({"a": [1, 4], "c": [3, 6]},
index=Index(["", "5"], name="b"))
tm.assert_frame_equal(out, expected)
# Parse NA-values in index when na_filter=True.
out = self.read_csv(StringIO(data), index_col=[1], na_filter=True)
expected = DataFrame({"a": [1, 4], "c": [3, 6]},
index=Index([np.nan, 5.0], name="b"))
tm.assert_frame_equal(out, expected)