forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_api.py
422 lines (331 loc) · 14 KB
/
test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# coding=utf-8
# pylint: disable-msg=E1101,W0612
from collections import OrderedDict
import pytest
import numpy as np
import pandas as pd
from pandas import Index, Series, DataFrame, date_range
from pandas.core.indexes.datetimes import Timestamp
from pandas.compat import range
from pandas import compat
import pandas.io.formats.printing as printing
from pandas.util.testing import (assert_series_equal,
ensure_clean)
import pandas.util.testing as tm
from .common import TestData
class SharedWithSparse(object):
"""
A collection of tests Series and SparseSeries can share.
In generic tests on this class, use ``self._assert_series_equal()``
which is implemented in sub-classes.
"""
def _assert_series_equal(self, left, right):
"""Dispatch to series class dependent assertion"""
raise NotImplementedError
def test_scalarop_preserve_name(self):
result = self.ts * 2
assert result.name == self.ts.name
def test_copy_name(self):
result = self.ts.copy()
assert result.name == self.ts.name
def test_copy_index_name_checking(self):
# don't want to be able to modify the index stored elsewhere after
# making a copy
self.ts.index.name = None
assert self.ts.index.name is None
assert self.ts is self.ts
cp = self.ts.copy()
cp.index.name = 'foo'
printing.pprint_thing(self.ts.index.name)
assert self.ts.index.name is None
def test_append_preserve_name(self):
result = self.ts[:5].append(self.ts[5:])
assert result.name == self.ts.name
def test_binop_maybe_preserve_name(self):
# names match, preserve
result = self.ts * self.ts
assert result.name == self.ts.name
result = self.ts.mul(self.ts)
assert result.name == self.ts.name
result = self.ts * self.ts[:-2]
assert result.name == self.ts.name
# names don't match, don't preserve
cp = self.ts.copy()
cp.name = 'something else'
result = self.ts + cp
assert result.name is None
result = self.ts.add(cp)
assert result.name is None
ops = ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow']
ops = ops + ['r' + op for op in ops]
for op in ops:
# names match, preserve
s = self.ts.copy()
result = getattr(s, op)(s)
assert result.name == self.ts.name
# names don't match, don't preserve
cp = self.ts.copy()
cp.name = 'changed'
result = getattr(s, op)(cp)
assert result.name is None
def test_combine_first_name(self):
result = self.ts.combine_first(self.ts[:5])
assert result.name == self.ts.name
def test_getitem_preserve_name(self):
result = self.ts[self.ts > 0]
assert result.name == self.ts.name
result = self.ts[[0, 2, 4]]
assert result.name == self.ts.name
result = self.ts[5:10]
assert result.name == self.ts.name
def test_pickle(self):
unp_series = self._pickle_roundtrip(self.series)
unp_ts = self._pickle_roundtrip(self.ts)
assert_series_equal(unp_series, self.series)
assert_series_equal(unp_ts, self.ts)
def _pickle_roundtrip(self, obj):
with ensure_clean() as path:
obj.to_pickle(path)
unpickled = pd.read_pickle(path)
return unpickled
def test_argsort_preserve_name(self):
result = self.ts.argsort()
assert result.name == self.ts.name
def test_sort_index_name(self):
result = self.ts.sort_index(ascending=False)
assert result.name == self.ts.name
def test_to_sparse_pass_name(self):
result = self.ts.to_sparse()
assert result.name == self.ts.name
def test_constructor_dict(self):
d = {'a': 0., 'b': 1., 'c': 2.}
result = self.series_klass(d)
expected = self.series_klass(d, index=sorted(d.keys()))
self._assert_series_equal(result, expected)
result = self.series_klass(d, index=['b', 'c', 'd', 'a'])
expected = self.series_klass([1, 2, np.nan, 0],
index=['b', 'c', 'd', 'a'])
self._assert_series_equal(result, expected)
def test_constructor_subclass_dict(self):
data = tm.TestSubDict((x, 10.0 * x) for x in range(10))
series = self.series_klass(data)
expected = self.series_klass(dict(compat.iteritems(data)))
self._assert_series_equal(series, expected)
def test_constructor_ordereddict(self):
# GH3283
data = OrderedDict(
('col%s' % i, np.random.random()) for i in range(12))
series = self.series_klass(data)
expected = self.series_klass(list(data.values()), list(data.keys()))
self._assert_series_equal(series, expected)
# Test with subclass
class A(OrderedDict):
pass
series = self.series_klass(A(data))
self._assert_series_equal(series, expected)
def test_constructor_dict_multiindex(self):
d = {('a', 'a'): 0., ('b', 'a'): 1., ('b', 'c'): 2.}
_d = sorted(d.items())
result = self.series_klass(d)
expected = self.series_klass(
[x[1] for x in _d],
index=pd.MultiIndex.from_tuples([x[0] for x in _d]))
self._assert_series_equal(result, expected)
d['z'] = 111.
_d.insert(0, ('z', d['z']))
result = self.series_klass(d)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = self.series_klass([x[1] for x in _d],
index=pd.Index([x[0] for x in _d],
tupleize_cols=False))
result = result.reindex(index=expected.index)
self._assert_series_equal(result, expected)
def test_constructor_dict_timedelta_index(self):
# GH #12169 : Resample category data with timedelta index
# construct Series from dict as data and TimedeltaIndex as index
# will result NaN in result Series data
expected = self.series_klass(
data=['A', 'B', 'C'],
index=pd.to_timedelta([0, 10, 20], unit='s')
)
result = self.series_klass(
data={pd.to_timedelta(0, unit='s'): 'A',
pd.to_timedelta(10, unit='s'): 'B',
pd.to_timedelta(20, unit='s'): 'C'},
index=pd.to_timedelta([0, 10, 20], unit='s')
)
self._assert_series_equal(result, expected)
class TestSeriesMisc(TestData, SharedWithSparse):
series_klass = Series
# SharedWithSparse tests use generic, series_klass-agnostic assertion
_assert_series_equal = staticmethod(tm.assert_series_equal)
def test_tab_completion(self):
# GH 9910
s = Series(list('abcd'))
# Series of str values should have .str but not .dt/.cat in __dir__
assert 'str' in dir(s)
assert 'dt' not in dir(s)
assert 'cat' not in dir(s)
# similiarly for .dt
s = Series(date_range('1/1/2015', periods=5))
assert 'dt' in dir(s)
assert 'str' not in dir(s)
assert 'cat' not in dir(s)
# Similarly for .cat, but with the twist that str and dt should be
# there if the categories are of that type first cat and str.
s = Series(list('abbcd'), dtype="category")
assert 'cat' in dir(s)
assert 'str' in dir(s) # as it is a string categorical
assert 'dt' not in dir(s)
# similar to cat and str
s = Series(date_range('1/1/2015', periods=5)).astype("category")
assert 'cat' in dir(s)
assert 'str' not in dir(s)
assert 'dt' in dir(s) # as it is a datetime categorical
def test_not_hashable(self):
s_empty = Series()
s = Series([1])
pytest.raises(TypeError, hash, s_empty)
pytest.raises(TypeError, hash, s)
def test_contains(self):
tm.assert_contains_all(self.ts.index, self.ts)
def test_iter(self):
for i, val in enumerate(self.series):
assert val == self.series[i]
for i, val in enumerate(self.ts):
assert val == self.ts[i]
def test_keys(self):
# HACK: By doing this in two stages, we avoid 2to3 wrapping the call
# to .keys() in a list()
getkeys = self.ts.keys
assert getkeys() is self.ts.index
def test_values(self):
tm.assert_almost_equal(self.ts.values, self.ts, check_dtype=False)
def test_iteritems(self):
for idx, val in compat.iteritems(self.series):
assert val == self.series[idx]
for idx, val in compat.iteritems(self.ts):
assert val == self.ts[idx]
# assert is lazy (genrators don't define reverse, lists do)
assert not hasattr(self.series.iteritems(), 'reverse')
def test_items(self):
for idx, val in self.series.items():
assert val == self.series[idx]
for idx, val in self.ts.items():
assert val == self.ts[idx]
# assert is lazy (genrators don't define reverse, lists do)
assert not hasattr(self.series.items(), 'reverse')
def test_raise_on_info(self):
s = Series(np.random.randn(10))
with pytest.raises(AttributeError):
s.info()
def test_copy(self):
for deep in [None, False, True]:
s = Series(np.arange(10), dtype='float64')
# default deep is True
if deep is None:
s2 = s.copy()
else:
s2 = s.copy(deep=deep)
s2[::2] = np.NaN
if deep is None or deep is True:
# Did not modify original Series
assert np.isnan(s2[0])
assert not np.isnan(s[0])
else:
# we DID modify the original Series
assert np.isnan(s2[0])
assert np.isnan(s[0])
# GH 11794
# copy of tz-aware
expected = Series([Timestamp('2012/01/01', tz='UTC')])
expected2 = Series([Timestamp('1999/01/01', tz='UTC')])
for deep in [None, False, True]:
s = Series([Timestamp('2012/01/01', tz='UTC')])
if deep is None:
s2 = s.copy()
else:
s2 = s.copy(deep=deep)
s2[0] = pd.Timestamp('1999/01/01', tz='UTC')
# default deep is True
if deep is None or deep is True:
# Did not modify original Series
assert_series_equal(s2, expected2)
assert_series_equal(s, expected)
else:
# we DID modify the original Series
assert_series_equal(s2, expected2)
assert_series_equal(s, expected2)
def test_axis_alias(self):
s = Series([1, 2, np.nan])
assert_series_equal(s.dropna(axis='rows'), s.dropna(axis='index'))
assert s.dropna().sum('rows') == 3
assert s._get_axis_number('rows') == 0
assert s._get_axis_name('rows') == 'index'
def test_numpy_unique(self):
# it works!
np.unique(self.ts)
def test_ndarray_compat(self):
# test numpy compat with Series as sub-class of NDFrame
tsdf = DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'],
index=date_range('1/1/2000', periods=1000))
def f(x):
return x[x.idxmax()]
result = tsdf.apply(f)
expected = tsdf.max()
tm.assert_series_equal(result, expected)
# .item()
s = Series([1])
result = s.item()
assert result == 1
assert s.item() == s.iloc[0]
# using an ndarray like function
s = Series(np.random.randn(10))
result = Series(np.ones_like(s))
expected = Series(1, index=range(10), dtype='float64')
tm.assert_series_equal(result, expected)
# ravel
s = Series(np.random.randn(10))
tm.assert_almost_equal(s.ravel(order='F'), s.values.ravel(order='F'))
# compress
# GH 6658
s = Series([0, 1., -1], index=list('abc'))
result = np.compress(s > 0, s)
tm.assert_series_equal(result, Series([1.], index=['b']))
result = np.compress(s < -1, s)
# result empty Index(dtype=object) as the same as original
exp = Series([], dtype='float64', index=Index([], dtype='object'))
tm.assert_series_equal(result, exp)
s = Series([0, 1., -1], index=[.1, .2, .3])
result = np.compress(s > 0, s)
tm.assert_series_equal(result, Series([1.], index=[.2]))
result = np.compress(s < -1, s)
# result empty Float64Index as the same as original
exp = Series([], dtype='float64', index=Index([], dtype='float64'))
tm.assert_series_equal(result, exp)
def test_str_attribute(self):
# GH9068
methods = ['strip', 'rstrip', 'lstrip']
s = Series([' jack', 'jill ', ' jesse ', 'frank'])
for method in methods:
expected = Series([getattr(str, method)(x) for x in s.values])
assert_series_equal(getattr(Series.str, method)(s.str), expected)
# str accessor only valid with string values
s = Series(range(5))
with tm.assert_raises_regex(AttributeError,
'only use .str accessor'):
s.str.repeat(2)
def test_empty_method(self):
s_empty = pd.Series()
assert s_empty.empty
for full_series in [pd.Series([1]), pd.Series(index=[1])]:
assert not full_series.empty
def test_tab_complete_warning(self, ip):
# https://github.com/pandas-dev/pandas/issues/16409
pytest.importorskip('IPython', minversion="6.0.0")
from IPython.core.completer import provisionalcompleter
code = "import pandas as pd; s = pd.Series()"
ip.run_code(code)
with tm.assert_produces_warning(None):
with provisionalcompleter('ignore'):
list(ip.Completer.completions('s.', 1))