|
1 | 1 | package com.fishercoder.solutions.firstthousand;
|
2 | 2 |
|
3 |
| -import java.util.Arrays; |
4 |
| - |
5 | 3 | public class _912 {
|
6 | 4 | public static class Solution1 {
|
| 5 | + /** |
| 6 | + * Implementation of MergeSort which is a stable sort, unlike QuickSort which isn't stable. |
| 7 | + */ |
7 | 8 | public int[] sortArray(int[] nums) {
|
8 |
| - Arrays.sort(nums); |
| 9 | + //use a helder function to take in two additional parameters for the ease of recursion |
| 10 | + return sort(nums, 0, nums.length - 1); |
| 11 | + } |
| 12 | + |
| 13 | + //this is the recursive function |
| 14 | + private int[] sort(int[] nums, int left, int right) { |
| 15 | + //this condition keeps dividing the array until nums becomes one individual item and then it goes back to the call stack |
| 16 | + if (left < right) { |
| 17 | + int mid = left + (right - left) / 2; |
| 18 | + sort(nums, left, mid); |
| 19 | + sort(nums, mid + 1, right); |
| 20 | + merge(nums, left, mid, right); |
| 21 | + } |
9 | 22 | return nums;
|
10 | 23 | }
|
| 24 | + |
| 25 | + private void merge(int[] nums, int left, int mid, int right) { |
| 26 | + int leftSize = mid - left + 1; |
| 27 | + int rightSize = right - mid; |
| 28 | + //use two temp array to copy the original values in the input before we overwrite them |
| 29 | + int[] leftHalf = new int[leftSize]; |
| 30 | + int[] rightHalf = new int[rightSize]; |
| 31 | + for (int i = 0; i < leftSize; i++) { |
| 32 | + //this index is key: it should be nums[left + i] as it should start from left instead of zero |
| 33 | + leftHalf[i] = nums[left + i]; |
| 34 | + } |
| 35 | + for (int i = 0; i < rightSize; i++) { |
| 36 | + //similarly, this index is key as well: it should be nums[mid + i + 1] instead of starting from zero |
| 37 | + rightHalf[i] = nums[mid + i + 1]; |
| 38 | + } |
| 39 | + int i = 0; |
| 40 | + int j = 0; |
| 41 | + //again, this index k = left is key, it should start from left instead of 0 |
| 42 | + int k = left; |
| 43 | + while (i < leftSize && j < rightSize) { |
| 44 | + if (leftHalf[i] < rightHalf[j]) { |
| 45 | + nums[k++] = leftHalf[i++]; |
| 46 | + } else { |
| 47 | + nums[k++] = rightHalf[j++]; |
| 48 | + } |
| 49 | + } |
| 50 | + |
| 51 | + while (i < leftSize) { |
| 52 | + nums[k++] = leftHalf[i++]; |
| 53 | + } |
| 54 | + while (j < rightSize) { |
| 55 | + nums[k++] = rightHalf[j++]; |
| 56 | + } |
| 57 | + } |
11 | 58 | }
|
12 | 59 | }
|
0 commit comments