forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhist.py
575 lines (500 loc) · 16.4 KB
/
hist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Literal,
final,
)
import numpy as np
from pandas.core.dtypes.common import (
is_integer,
is_list_like,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
)
from pandas.core.dtypes.missing import (
isna,
remove_na_arraylike,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import (
create_iter_data_given_by,
reformat_hist_y_given_by,
)
from pandas.plotting._matplotlib.misc import unpack_single_str_list
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.container import BarContainer
from matplotlib.figure import Figure
from matplotlib.patches import Polygon
from pandas._typing import PlottingOrientation
from pandas import (
DataFrame,
Series,
)
class HistPlot(LinePlot):
@property
def _kind(self) -> Literal["hist", "kde"]:
return "hist"
def __init__(
self,
data,
bins: int | np.ndarray | list[np.ndarray] = 10,
bottom: int | np.ndarray = 0,
*,
range=None,
weights=None,
**kwargs,
) -> None:
if is_list_like(bottom):
bottom = np.array(bottom)
self.bottom = bottom
self._bin_range = range
self.weights = weights
self.xlabel = kwargs.get("xlabel")
self.ylabel = kwargs.get("ylabel")
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs)
self.bins = self._adjust_bins(bins)
def _adjust_bins(self, bins: int | np.ndarray | list[np.ndarray]):
if is_integer(bins):
if self.by is not None:
by_modified = unpack_single_str_list(self.by)
grouped = self.data.groupby(by_modified)[self.columns]
bins = [self._calculate_bins(group, bins) for key, group in grouped]
else:
bins = self._calculate_bins(self.data, bins)
return bins
def _calculate_bins(self, data: Series | DataFrame, bins) -> np.ndarray:
"""Calculate bins given data"""
nd_values = data.infer_objects()._get_numeric_data()
values = nd_values.values
if nd_values.ndim == 2:
values = values.reshape(-1)
values = values[~isna(values)]
return np.histogram_bin_edges(values, bins=bins, range=self._bin_range)
# error: Signature of "_plot" incompatible with supertype "LinePlot"
@classmethod
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bottom: int | np.ndarray = 0,
column_num: int = 0,
stacking_id=None,
*,
bins,
**kwds,
# might return a subset from the possible return types of Axes.hist(...)[2]?
) -> BarContainer | Polygon | list[BarContainer | Polygon]:
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
base = np.zeros(len(bins) - 1)
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
# ignore style
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
cls._update_stacker(ax, stacking_id, n)
return patches
def _make_plot(self, fig: Figure) -> None:
colors = self._get_colors()
stacking_id = self._get_stacking_id()
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
# error: Argument "data" to "_iter_data" of "MPLPlot" has incompatible
# type "object"; expected "DataFrame | dict[Hashable, Series | DataFrame]"
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self.color is not None:
kwds["color"] = self.color
label = pprint_thing(label)
label = self._mark_right_label(label, index=i)
kwds["label"] = label
style, kwds = self._apply_style_colors(colors, kwds, i, label)
if style is not None:
kwds["style"] = style
self._make_plot_keywords(kwds, y)
# the bins is multi-dimension array now and each plot need only 1-d and
# when by is applied, label should be columns that are grouped
if self.by is not None:
kwds["bins"] = kwds["bins"][i]
kwds["label"] = self.columns
kwds.pop("color")
if self.weights is not None:
kwds["weights"] = type(self)._get_column_weights(self.weights, i, y)
y = reformat_hist_y_given_by(y, self.by)
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
# when by is applied, show title for subplots to know which group it is
if self.by is not None:
ax.set_title(pprint_thing(label))
# error: Value of type "Polygon" is not indexable
self._append_legend_handles_labels(artists[0], label) # type: ignore[index,arg-type]
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
"""merge BoxPlot/KdePlot properties to passed kwds"""
# y is required for KdePlot
kwds["bottom"] = self.bottom
kwds["bins"] = self.bins
@final
@staticmethod
def _get_column_weights(weights, i: int, y):
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
# and each sub-array (10,) will be called in each iteration. If users only
# provide 1D array, we assume the same weights is used for all iterations
if weights is not None:
if np.ndim(weights) != 1 and np.shape(weights)[-1] != 1:
try:
weights = weights[:, i]
except IndexError as err:
raise ValueError(
"weights must have the same shape as data, "
"or be a single column"
) from err
weights = weights[~isna(y)]
return weights
def _post_plot_logic(self, ax: Axes, data) -> None:
if self.orientation == "horizontal":
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
# type "Hashable"; expected "str"
ax.set_xlabel(
"Frequency" if self.xlabel is None else self.xlabel # type: ignore[arg-type]
)
ax.set_ylabel(self.ylabel) # type: ignore[arg-type]
else:
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
ax.set_ylabel(
"Frequency" if self.ylabel is None else self.ylabel # type: ignore[arg-type]
)
@property
def orientation(self) -> PlottingOrientation:
if self.kwds.get("orientation", None) == "horizontal":
return "horizontal"
else:
return "vertical"
class KdePlot(HistPlot):
@property
def _kind(self) -> Literal["kde"]:
return "kde"
@property
def orientation(self) -> Literal["vertical"]:
return "vertical"
def __init__(
self, data, bw_method=None, ind=None, *, weights=None, **kwargs
) -> None:
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs)
self.bw_method = bw_method
self.ind = ind
self.weights = weights
@staticmethod
def _get_ind(y: np.ndarray, ind):
if ind is None:
# np.nanmax() and np.nanmin() ignores the missing values
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
1000,
)
elif is_integer(ind):
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
ind,
)
return ind
@classmethod
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bw_method=None,
weights=None,
ind=None,
column_num=None,
stacking_id: int | None = None,
**kwds,
):
from scipy.stats import gaussian_kde
y = remove_na_arraylike(y)
gkde = gaussian_kde(y, bw_method=bw_method, weights=weights)
y = gkde.evaluate(ind)
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
return lines
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
kwds["bw_method"] = self.bw_method
kwds["ind"] = type(self)._get_ind(y, ind=self.ind)
def _post_plot_logic(self, ax: Axes, data) -> None:
ax.set_ylabel("Density")
def _grouped_plot(
plotf,
data: Series | DataFrame,
column=None,
by=None,
numeric_only: bool = True,
figsize: tuple[float, float] | None = None,
sharex: bool = True,
sharey: bool = True,
layout=None,
rot: float = 0,
ax=None,
**kwargs,
):
# error: Non-overlapping equality check (left operand type: "Optional[Tuple[float,
# float]]", right operand type: "Literal['default']")
if figsize == "default": # type: ignore[comparison-overlap]
# allowed to specify mpl default with 'default'
raise ValueError(
"figsize='default' is no longer supported. "
"Specify figure size by tuple instead"
)
grouped = data.groupby(by)
if column is not None:
grouped = grouped[column]
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
)
for ax, (key, group) in zip(flatten_axes(axes), grouped):
if numeric_only and isinstance(group, ABCDataFrame):
group = group._get_numeric_data()
plotf(group, ax, **kwargs)
ax.set_title(pprint_thing(key))
return fig, axes
def _grouped_hist(
data: Series | DataFrame,
column=None,
by=None,
ax=None,
bins: int = 50,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = False,
rot: float = 90,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
legend: bool = False,
**kwargs,
):
"""
Grouped histogram
Parameters
----------
data : Series/DataFrame
column : object, optional
by : object, optional
ax : axes, optional
bins : int, default 50
figsize : tuple, optional
layout : optional
sharex : bool, default False
sharey : bool, default False
rot : float, default 90
grid : bool, default True
legend: : bool, default False
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
Returns
-------
collection of Matplotlib Axes
"""
if legend:
assert "label" not in kwargs
if data.ndim == 1:
kwargs["label"] = data.name
elif column is None:
kwargs["label"] = data.columns
else:
kwargs["label"] = column
def plot_group(group, ax) -> None:
ax.hist(group.dropna().values, bins=bins, **kwargs)
if legend:
ax.legend()
if xrot is None:
xrot = rot
fig, axes = _grouped_plot(
plot_group,
data,
column=column,
by=by,
sharex=sharex,
sharey=sharey,
ax=ax,
figsize=figsize,
layout=layout,
rot=rot,
)
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(
fig, bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
)
return axes
def hist_series(
self: Series,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
figsize: tuple[float, float] | None = None,
bins: int = 10,
legend: bool = False,
**kwds,
):
import matplotlib.pyplot as plt
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is None:
if kwds.get("layout", None) is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
# hack until the plotting interface is a bit more unified
fig = kwds.pop(
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
)
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
fig.set_size_inches(*figsize, forward=True)
if ax is None:
ax = fig.gca()
elif ax.get_figure() != fig:
raise AssertionError("passed axis not bound to passed figure")
values = self.dropna().values
if legend:
kwds["label"] = self.name
ax.hist(values, bins=bins, **kwds)
if legend:
ax.legend()
ax.grid(grid)
axes = np.array([ax])
set_ticks_props(
axes,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
)
else:
if "figure" in kwds:
raise ValueError(
"Cannot pass 'figure' when using the "
"'by' argument, since a new 'Figure' instance will be created"
)
axes = _grouped_hist(
self,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
if hasattr(axes, "ndim"):
if axes.ndim == 1 and len(axes) == 1:
return axes[0]
return axes
def hist_frame(
data: DataFrame,
column=None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
ax=None,
sharex: bool = False,
sharey: bool = False,
figsize: tuple[float, float] | None = None,
layout=None,
bins: int = 10,
legend: bool = False,
**kwds,
):
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is not None:
axes = _grouped_hist(
data,
column=column,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
sharex=sharex,
sharey=sharey,
layout=layout,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
return axes
if column is not None:
if not isinstance(column, (list, np.ndarray, ABCIndex)):
column = [column]
data = data[column]
# GH32590
data = data.select_dtypes(
include=(np.number, "datetime64", "datetimetz"), exclude="timedelta"
)
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"hist method requires numerical or datetime columns, nothing to plot."
)
fig, axes = create_subplots(
naxes=naxes,
ax=ax,
squeeze=False,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
can_set_label = "label" not in kwds
for ax, col in zip(flatten_axes(axes), data.columns):
if legend and can_set_label:
kwds["label"] = col
ax.hist(data[col].dropna().values, bins=bins, **kwds)
ax.set_title(col)
ax.grid(grid)
if legend:
ax.legend()
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(fig, wspace=0.3, hspace=0.3)
return axes