forked from aws/aws-encryption-sdk-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelliptic_curve.py
189 lines (169 loc) · 9.01 KB
/
elliptic_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Contains elliptic curve functionality."""
import logging
from collections import namedtuple
import six
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.asymmetric.utils import Prehashed, decode_dss_signature, encode_dss_signature
from cryptography.utils import InterfaceNotImplemented, int_to_bytes, verify_interface
from ...exceptions import NotSupportedError
from ..str_ops import to_bytes
_LOGGER = logging.getLogger(__name__)
# Curve parameter values are included strictly as a temporary measure
# until they can be rolled into the cryptography.io library.
# Expanded values from http://www.secg.org/sec2-v2.pdf
_ECCCurveParameters = namedtuple("_ECCCurveParameters", ["p", "a", "b", "order"])
_ECC_CURVE_PARAMETERS = {
"secp256r1": _ECCCurveParameters(
p=0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF,
a=0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC,
b=0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B,
order=0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551,
),
"secp384r1": _ECCCurveParameters(
p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF,
a=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC,
b=0xB3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF,
order=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973,
),
"secp521r1": _ECCCurveParameters(
p=0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, # noqa pylint: disable=line-too-long
a=0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC, # noqa pylint: disable=line-too-long
b=0x0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00, # noqa pylint: disable=line-too-long
order=0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409, # noqa pylint: disable=line-too-long
),
}
def _ecc_static_length_signature(key, algorithm, digest):
"""Calculates an elliptic curve signature with a static length using pre-calculated hash.
:param key: Elliptic curve private key
:type key: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
:param algorithm: Master algorithm to use
:type algorithm: aws_encryption_sdk.identifiers.Algorithm
:param bytes digest: Pre-calculated hash digest
:returns: Signature with required length
:rtype: bytes
"""
pre_hashed_algorithm = ec.ECDSA(Prehashed(algorithm.signing_hash_type()))
signature = b""
while len(signature) != algorithm.signature_len:
_LOGGER.debug(
"Signature length %d is not desired length %d. Recalculating.", len(signature), algorithm.signature_len
)
signature = key.sign(digest, pre_hashed_algorithm)
if len(signature) != algorithm.signature_len:
# Most of the time, a signature of the wrong length can be fixed
# by negating s in the signature relative to the group order.
_LOGGER.debug(
"Signature length %d is not desired length %d. Negating s.", len(signature), algorithm.signature_len
)
r, s = decode_dss_signature(signature)
s = _ECC_CURVE_PARAMETERS[algorithm.signing_algorithm_info.name].order - s
signature = encode_dss_signature(r, s)
return signature
def _ecc_encode_compressed_point(private_key):
"""Encodes a compressed elliptic curve point
as described in SEC-1 v2 section 2.3.3
http://www.secg.org/sec1-v2.pdf
:param private_key: Private key from which to extract point data
:type private_key: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
:returns: Encoded compressed elliptic curve point
:rtype: bytes
:raises NotSupportedError: for non-prime curves
"""
# key_size is in bits. Convert to bytes and round up
byte_length = (private_key.curve.key_size + 7) // 8
public_numbers = private_key.public_key().public_numbers()
y_map = [b"\x02", b"\x03"]
# If curve in prime field.
if private_key.curve.name.startswith("secp"):
y_order = public_numbers.y % 2
y = y_map[y_order]
else:
raise NotSupportedError("Non-prime curves are not supported at this time")
return y + int_to_bytes(public_numbers.x, byte_length)
def _ecc_decode_compressed_point(curve, compressed_point):
"""Decodes a compressed elliptic curve point
as described in SEC-1 v2 section 2.3.4
http://www.secg.org/sec1-v2.pdf
:param curve: Elliptic curve type to generate
:type curve: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve
:param bytes compressed_point: Encoded compressed elliptic curve point
:returns: X and Y coordinates from compressed point
:rtype: tuple of longs
:raises NotSupportedError: for non-prime curves, unsupported prime curves, and points at infinity
"""
if not compressed_point:
raise NotSupportedError("Points at infinity are not allowed")
y_order_map = {b"\x02": 0, b"\x03": 1}
raw_x = compressed_point[1:]
raw_x = to_bytes(raw_x)
x = int.from_bytes(raw_x, "big")
raw_y = compressed_point[0]
# In Python3, bytes index calls return int values rather than strings
if isinstance(raw_y, six.integer_types):
raw_y = six.b(chr(raw_y))
elif isinstance(raw_y, six.string_types):
raw_y = six.b(raw_y)
y_order = y_order_map[raw_y]
# If curve in prime field.
if curve.name.startswith("secp"):
try:
params = _ECC_CURVE_PARAMETERS[curve.name]
except KeyError:
raise NotSupportedError("Curve {name} is not supported at this time".format(name=curve.name))
alpha = (pow(x, 3, params.p) + (params.a * x % params.p) + params.b) % params.p
# Only works for p % 4 == 3 at this time.
# This is the case for all currently supported algorithms.
# This will need to be expanded if curves which do not match this are added.
# Python-ecdsa has these algorithms implemented. Copy or reference?
# https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
# Handbook of Applied Cryptography, algorithms 3.34 - 3.39
if params.p % 4 == 3:
beta = pow(alpha, (params.p + 1) // 4, params.p)
else:
raise NotSupportedError("S not 1 :: Curve not supported at this time")
if beta % 2 == y_order:
y = beta
else:
y = params.p - beta
else:
raise NotSupportedError("Non-prime curves are not supported at this time")
return x, y
def _ecc_public_numbers_from_compressed_point(curve, compressed_point):
"""Decodes a compressed elliptic curve point
as described in SEC-1 v2 section 2.3.3
and returns a PublicNumbers instance
based on the decoded point.
http://www.secg.org/sec1-v2.pdf
:param curve: Elliptic curve type to generate
:type curve: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurve
:param bytes compressed_point: Encoded compressed elliptic curve point
:returns: EllipticCurvePublicNumbers instance generated from compressed point and curve
:rtype: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicNumbers
"""
x, y = _ecc_decode_compressed_point(curve, compressed_point)
return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=curve)
def generate_ecc_signing_key(algorithm):
"""Returns an ECC signing key.
:param algorithm: Algorithm object which determines what signature to generate
:type algorithm: aws_encryption_sdk.identifiers.Algorithm
:returns: Generated signing key
:raises NotSupportedError: if signing algorithm is not supported on this platform
"""
try:
verify_interface(ec.EllipticCurve, algorithm.signing_algorithm_info)
return ec.generate_private_key(curve=algorithm.signing_algorithm_info(), backend=default_backend())
except InterfaceNotImplemented:
raise NotSupportedError("Unsupported signing algorithm info")