forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_timeseries.py
367 lines (276 loc) · 12.1 KB
/
test_timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
from __future__ import print_function
from datetime import datetime
from numpy import nan
from numpy.random import randn
import numpy as np
from pandas import DataFrame, Series, Index, Timestamp, DatetimeIndex
import pandas as pd
import pandas.core.datetools as datetools
from pandas.util.testing import (assert_almost_equal,
assert_series_equal,
assert_frame_equal,
assertRaisesRegexp)
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameTimeSeriesMethods(tm.TestCase, TestData):
_multiprocess_can_split_ = True
def test_diff(self):
the_diff = self.tsframe.diff(1)
assert_series_equal(the_diff['A'],
self.tsframe['A'] - self.tsframe['A'].shift(1))
# int dtype
a = 10000000000000000
b = a + 1
s = Series([a, b])
rs = DataFrame({'s': s}).diff()
self.assertEqual(rs.s[1], 1)
# mixed numeric
tf = self.tsframe.astype('float32')
the_diff = tf.diff(1)
assert_series_equal(the_diff['A'],
tf['A'] - tf['A'].shift(1))
# issue 10907
df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])})
df.insert(0, 'x', 1)
result = df.diff(axis=1)
expected = pd.DataFrame({'x': np.nan, 'y': pd.Series(
1), 'z': pd.Series(1)}).astype('float64')
assert_frame_equal(result, expected)
def test_diff_timedelta(self):
# GH 4533
df = DataFrame(dict(time=[Timestamp('20130101 9:01'),
Timestamp('20130101 9:02')],
value=[1.0, 2.0]))
res = df.diff()
exp = DataFrame([[pd.NaT, np.nan],
[pd.Timedelta('00:01:00'), 1]],
columns=['time', 'value'])
assert_frame_equal(res, exp)
def test_diff_mixed_dtype(self):
df = DataFrame(np.random.randn(5, 3))
df['A'] = np.array([1, 2, 3, 4, 5], dtype=object)
result = df.diff()
self.assertEqual(result[0].dtype, np.float64)
def test_diff_neg_n(self):
rs = self.tsframe.diff(-1)
xp = self.tsframe - self.tsframe.shift(-1)
assert_frame_equal(rs, xp)
def test_diff_float_n(self):
rs = self.tsframe.diff(1.)
xp = self.tsframe.diff(1)
assert_frame_equal(rs, xp)
def test_diff_axis(self):
# GH 9727
df = DataFrame([[1., 2.], [3., 4.]])
assert_frame_equal(df.diff(axis=1), DataFrame(
[[np.nan, 1.], [np.nan, 1.]]))
assert_frame_equal(df.diff(axis=0), DataFrame(
[[np.nan, np.nan], [2., 2.]]))
def test_pct_change(self):
rs = self.tsframe.pct_change(fill_method=None)
assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1)
rs = self.tsframe.pct_change(2)
filled = self.tsframe.fillna(method='pad')
assert_frame_equal(rs, filled / filled.shift(2) - 1)
rs = self.tsframe.pct_change(fill_method='bfill', limit=1)
filled = self.tsframe.fillna(method='bfill', limit=1)
assert_frame_equal(rs, filled / filled.shift(1) - 1)
rs = self.tsframe.pct_change(freq='5D')
filled = self.tsframe.fillna(method='pad')
assert_frame_equal(rs, filled / filled.shift(freq='5D') - 1)
def test_pct_change_shift_over_nas(self):
s = Series([1., 1.5, np.nan, 2.5, 3.])
df = DataFrame({'a': s, 'b': s})
chg = df.pct_change()
expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2])
edf = DataFrame({'a': expected, 'b': expected})
assert_frame_equal(chg, edf)
def test_shift(self):
# naive shift
shiftedFrame = self.tsframe.shift(5)
self.assert_index_equal(shiftedFrame.index, self.tsframe.index)
shiftedSeries = self.tsframe['A'].shift(5)
assert_series_equal(shiftedFrame['A'], shiftedSeries)
shiftedFrame = self.tsframe.shift(-5)
self.assert_index_equal(shiftedFrame.index, self.tsframe.index)
shiftedSeries = self.tsframe['A'].shift(-5)
assert_series_equal(shiftedFrame['A'], shiftedSeries)
# shift by 0
unshifted = self.tsframe.shift(0)
assert_frame_equal(unshifted, self.tsframe)
# shift by DateOffset
shiftedFrame = self.tsframe.shift(5, freq=datetools.BDay())
self.assertEqual(len(shiftedFrame), len(self.tsframe))
shiftedFrame2 = self.tsframe.shift(5, freq='B')
assert_frame_equal(shiftedFrame, shiftedFrame2)
d = self.tsframe.index[0]
shifted_d = d + datetools.BDay(5)
assert_series_equal(self.tsframe.xs(d),
shiftedFrame.xs(shifted_d), check_names=False)
# shift int frame
int_shifted = self.intframe.shift(1) # noqa
# Shifting with PeriodIndex
ps = tm.makePeriodFrame()
shifted = ps.shift(1)
unshifted = shifted.shift(-1)
self.assert_index_equal(shifted.index, ps.index)
self.assert_index_equal(unshifted.index, ps.index)
tm.assert_numpy_array_equal(unshifted.ix[:, 0].valid().values,
ps.ix[:-1, 0].values)
shifted2 = ps.shift(1, 'B')
shifted3 = ps.shift(1, datetools.bday)
assert_frame_equal(shifted2, shifted3)
assert_frame_equal(ps, shifted2.shift(-1, 'B'))
assertRaisesRegexp(ValueError, 'does not match PeriodIndex freq',
ps.shift, freq='D')
# shift other axis
# GH 6371
df = DataFrame(np.random.rand(10, 5))
expected = pd.concat([DataFrame(np.nan, index=df.index,
columns=[0]),
df.iloc[:, 0:-1]],
ignore_index=True, axis=1)
result = df.shift(1, axis=1)
assert_frame_equal(result, expected)
# shift named axis
df = DataFrame(np.random.rand(10, 5))
expected = pd.concat([DataFrame(np.nan, index=df.index,
columns=[0]),
df.iloc[:, 0:-1]],
ignore_index=True, axis=1)
result = df.shift(1, axis='columns')
assert_frame_equal(result, expected)
def test_shift_bool(self):
df = DataFrame({'high': [True, False],
'low': [False, False]})
rs = df.shift(1)
xp = DataFrame(np.array([[np.nan, np.nan],
[True, False]], dtype=object),
columns=['high', 'low'])
assert_frame_equal(rs, xp)
def test_shift_categorical(self):
# GH 9416
s1 = pd.Series(['a', 'b', 'c'], dtype='category')
s2 = pd.Series(['A', 'B', 'C'], dtype='category')
df = DataFrame({'one': s1, 'two': s2})
rs = df.shift(1)
xp = DataFrame({'one': s1.shift(1), 'two': s2.shift(1)})
assert_frame_equal(rs, xp)
def test_shift_empty(self):
# Regression test for #8019
df = DataFrame({'foo': []})
rs = df.shift(-1)
assert_frame_equal(df, rs)
def test_tshift(self):
# PeriodIndex
ps = tm.makePeriodFrame()
shifted = ps.tshift(1)
unshifted = shifted.tshift(-1)
assert_frame_equal(unshifted, ps)
shifted2 = ps.tshift(freq='B')
assert_frame_equal(shifted, shifted2)
shifted3 = ps.tshift(freq=datetools.bday)
assert_frame_equal(shifted, shifted3)
assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M')
# DatetimeIndex
shifted = self.tsframe.tshift(1)
unshifted = shifted.tshift(-1)
assert_frame_equal(self.tsframe, unshifted)
shifted2 = self.tsframe.tshift(freq=self.tsframe.index.freq)
assert_frame_equal(shifted, shifted2)
inferred_ts = DataFrame(self.tsframe.values,
Index(np.asarray(self.tsframe.index)),
columns=self.tsframe.columns)
shifted = inferred_ts.tshift(1)
unshifted = shifted.tshift(-1)
assert_frame_equal(shifted, self.tsframe.tshift(1))
assert_frame_equal(unshifted, inferred_ts)
no_freq = self.tsframe.ix[[0, 5, 7], :]
self.assertRaises(ValueError, no_freq.tshift)
def test_truncate(self):
ts = self.tsframe[::3]
start, end = self.tsframe.index[3], self.tsframe.index[6]
start_missing = self.tsframe.index[2]
end_missing = self.tsframe.index[7]
# neither specified
truncated = ts.truncate()
assert_frame_equal(truncated, ts)
# both specified
expected = ts[1:3]
truncated = ts.truncate(start, end)
assert_frame_equal(truncated, expected)
truncated = ts.truncate(start_missing, end_missing)
assert_frame_equal(truncated, expected)
# start specified
expected = ts[1:]
truncated = ts.truncate(before=start)
assert_frame_equal(truncated, expected)
truncated = ts.truncate(before=start_missing)
assert_frame_equal(truncated, expected)
# end specified
expected = ts[:3]
truncated = ts.truncate(after=end)
assert_frame_equal(truncated, expected)
truncated = ts.truncate(after=end_missing)
assert_frame_equal(truncated, expected)
self.assertRaises(ValueError, ts.truncate,
before=ts.index[-1] - 1,
after=ts.index[0] + 1)
def test_truncate_copy(self):
index = self.tsframe.index
truncated = self.tsframe.truncate(index[5], index[10])
truncated.values[:] = 5.
self.assertFalse((self.tsframe.values[5:11] == 5).any())
def test_asfreq(self):
offset_monthly = self.tsframe.asfreq(datetools.bmonthEnd)
rule_monthly = self.tsframe.asfreq('BM')
assert_almost_equal(offset_monthly['A'], rule_monthly['A'])
filled = rule_monthly.asfreq('B', method='pad') # noqa
# TODO: actually check that this worked.
# don't forget!
filled_dep = rule_monthly.asfreq('B', method='pad') # noqa
# test does not blow up on length-0 DataFrame
zero_length = self.tsframe.reindex([])
result = zero_length.asfreq('BM')
self.assertIsNot(result, zero_length)
def test_asfreq_datetimeindex(self):
df = DataFrame({'A': [1, 2, 3]},
index=[datetime(2011, 11, 1), datetime(2011, 11, 2),
datetime(2011, 11, 3)])
df = df.asfreq('B')
tm.assertIsInstance(df.index, DatetimeIndex)
ts = df['A'].asfreq('B')
tm.assertIsInstance(ts.index, DatetimeIndex)
def test_first_last_valid(self):
N = len(self.frame.index)
mat = randn(N)
mat[:5] = nan
mat[-5:] = nan
frame = DataFrame({'foo': mat}, index=self.frame.index)
index = frame.first_valid_index()
self.assertEqual(index, frame.index[5])
index = frame.last_valid_index()
self.assertEqual(index, frame.index[-6])
# GH12800
empty = DataFrame()
self.assertIsNone(empty.last_valid_index())
self.assertIsNone(empty.first_valid_index())
def test_operation_on_NaT(self):
# Both NaT and Timestamp are in DataFrame.
df = pd.DataFrame({'foo': [pd.NaT, pd.NaT,
pd.Timestamp('2012-05-01')]})
res = df.min()
exp = pd.Series([pd.Timestamp('2012-05-01')], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = pd.Series([pd.Timestamp('2012-05-01')], index=["foo"])
tm.assert_series_equal(res, exp)
# GH12941, only NaTs are in DataFrame.
df = pd.DataFrame({'foo': [pd.NaT, pd.NaT]})
res = df.min()
exp = pd.Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = pd.Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)