The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics, from first principles.
VASP computes an approximate solution to the many-body Schrödinger equation, either within density functional theory (DFT), solving the Kohn-Sham equations, or within the Hartree-Fock (HF) approximation, solving the Roothaan equations. Hybrid functionals that mix the Hartree-Fock approach with density functional theory are implemented as well. Furthermore, Green's functions methods (GW quasiparticles, and ACFDT-RPA) and many-body perturbation theory (2nd-order Møller-Plesset) are available in VASP.
In VASP, central quantities, like the one-electron orbitals, the electronic charge density, and the local potential are expressed in plane wave basis sets. The interactions between the electrons and ions are described using norm-conserving or ultrasoft pseudopotentials, or the projector-augmented-wave method. To determine the electronic groundstate, VASP makes use of efficient iterative matrix diagonalisation techniques, like the residual minimisation method with direct inversion of the iterative subspace (RMM-DIIS) or blocked Davidson algorithms. These are coupled to highly efficient Broyden and Pulay density mixing schemes to speed up the self-consistency cycle.
!!! note "Licensing Terms and Conditions"
Access to VASP is restricted to users who have purchased a license from VASP Software GmbH.
CSCS cannot provide free access to the code and needs to inform VASP Software GmbH with an updated list of users.
Once you have a license, submit a request on the CSCS service desk (with a copy of your license) to be added to the vasp6
unix group, which will grant access to the vasp
uenv.
Please refer to the VASP web site for more information about licensing.
Therefore, access to precompiled VASP.6
executables and library files will be available only to users who have already purchased a VASP.6
license and upon request will become members of the CSCS unix group vasp6
.
To access VASP follow the [`Accessing Restricted Software`][ref-uenv-restricted-software] guide.
Please refer to the [VASP web site](https://www.vasp.at) for more information.
A precompiled uenv containing VASP with MPI, OpenMP, OpenACC, HDF5 and Wannier90 support is available. Due to license restrictions, the VASP images are not directly accessible in the same way as other applications.
For accessing VASP uenv images, please see the guide to [accessing restricted software][ref-uenv-restricted-software].
To load the VASP uenv:
uenv start vasp/v6.5.0:v1 --view=vasp
The vasp_std
, vasp_ncl
and vasp_gam
executables are now available for use.
Loading the uenv can also be directly done inside of a SLURM script.
#!/bin/bash -l
#SBATCH --job-name=vasp
#SBATCH --time=24:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=16
#SBATCH --gpus-per-task=1
#SBATCH --uenv=vasp/v6.5.0:v1
#SBATCH --view=vasp
#SBATCH --account=<ACCOUNT>
#SBATCH --partition=normal
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export MPICH_GPU_SUPPORT_ENABLED=1
srun vasp_std
!!! note
It's recommended to use the SLURM option --gpus-per-task=1
, since VASP may fail to properly assign ranks to GPUs when running on more than one node.
This is not required when using the CUDA MPS wrapper for oversubscription of GPUs.
!!! note
VASP relies on CUDA-aware MPI, which requires MPICH_GPU_SUPPORT_ENABLED=1
to be set when using Cray MPICH. On the HPC platform including daint
, this is set by default and does not have to be included in SLURM scripts.
Using more than one task per GPU is possible with VASP and may lead to better GPU utilization. However, VASP relies on NCCL for efficient communication, but falls back to MPI when using multiple tasks per GPU. In many cases, this drawback is the greater factor and it's best to use one task per GPU.
To run with multiple tasks per GPU, a wrapper script is required to start a CUDA MPS service. This script can be found at [NVIDIA GH200 GPU nodes: multiple ranks per GPU][ref-slurm-gh200-multi-rank-per-gpu].
#!/bin/bash -l
#SBATCH --job-name=vasp
#SBATCH --time=24:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=16
#SBATCH --uenv=vasp/v6.5.0:v1
#SBATCH --view=vasp
#SBATCH --account=<ACCOUNT>
#SBATCH --partition=normal
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export MPICH_GPU_SUPPORT_ENABLED=1
srun ./mps-wrapper.sh vasp_std
To build VASP from source, the develop
view must first be loaded:
uenv start vasp/v6.5.0:v1 --view=develop
All required dependencies can now be found in /user-environment/env/develop
.
Note that shared libraries might not be found when executing VASP, if the makefile does not include additional rpath linking options or LD_LIBRARY_PATH
has not been extended.
!!! warning
The detection of MPI CUDA support does not work properly with Cray MPICH.
After compiling from source, it's also required to set export PMPI_GPU_AWARE=1
at runtime to disable the CUDA support check within VASP.
Alternatively, since version 6.5.0, the build option -DCRAY_MPICH
can be added to disable the check at compile time.
The provided precompiled binaries of VASP are patched and do not require special settings.
Examples for makefiles that set the necessary rpath and link options on GH200:
??? note "Makefile for v6.5.0"
```make
# Default precompiler options
CPP_OPTIONS = -DHOST="LinuxNV"
-DMPI -DMPI_INPLACE -DMPI_BLOCK=8000 -Duse_collective
-DscaLAPACK
-DCACHE_SIZE=4000
-Davoidalloc
-Dvasp6
-Dtbdyn
-Dqd_emulate
-Dfock_dblbuf
-D_OPENMP
-DACC_OFFLOAD
-DNVCUDA
-DUSENCCL
-DCRAY_MPICH
CPP = nvfortran -Mpreprocess -Mfree -Mextend -E $(CPP_OPTIONS) $*$(FUFFIX) > $*$(SUFFIX)
CPP = nvfortran -Mpreprocess -Mfree -Mextend -E $(CPP_OPTIONS) $*$(FUFFIX) > $*$(SUFFIX)
CUDA_VERSION = $(shell nvcc -V | grep -E -o -m 1 "[0-9][0-9]\.[0-9]," | rev | cut -c 2- | rev)
CC = mpicc -acc -gpu=cc90,cuda${CUDA_VERSION} -mp
FC = mpif90 -acc -gpu=cc90,cuda${CUDA_VERSION} -mp
FCL = mpif90 -acc -gpu=cc90,cuda${CUDA_VERSION} -mp -c++libs
FREE = -Mfree
FFLAGS = -Mbackslash -Mlarge_arrays
OFLAG = -fast
DEBUG = -Mfree -O0 -traceback
LLIBS = -cudalib=cublas,cusolver,cufft,nccl -cuda
# Redefine the standard list of O1 and O2 objects
SOURCE_O1 := pade_fit.o minimax_dependence.o
SOURCE_O2 := pead.o
# For what used to be vasp.5.lib
CPP_LIB = $(CPP)
FC_LIB = $(FC)
CC_LIB = $(CC)
CFLAGS_LIB = -O -w
FFLAGS_LIB = -O1 -Mfixed
FREE_LIB = $(FREE)
OBJECTS_LIB = linpack_double.o
# For the parser library
CXX_PARS = nvc++ --no_warnings
##
## Customize as of this point! Of course you may change the preceding
## part of this file as well if you like, but it should rarely be
## necessary ...
##
# When compiling on the target machine itself , change this to the
# relevant target when cross-compiling for another architecture
#
# NOTE: Using "-tp neoverse-v2" causes some tests to fail. On GH200 architecture, "-tp host"
# is recommended.
VASP_TARGET_CPU ?= -tp host
FFLAGS += $(VASP_TARGET_CPU)
# Specify your NV HPC-SDK installation (mandatory)
#... first try to set it automatically
NVROOT =$(shell which nvfortran | awk -F /compilers/bin/nvfortran '{ print $$1 }')
# If the above fails, then NVROOT needs to be set manually
#NVHPC ?= /opt/nvidia/hpc_sdk
#NVVERSION = 21.11
#NVROOT = $(NVHPC)/Linux_x86_64/$(NVVERSION)
## Improves performance when using NV HPC-SDK >=21.11 and CUDA >11.2
#OFLAG_IN = -fast -Mwarperf
#SOURCE_IN := nonlr.o
# Software emulation of quadruple precsion (mandatory)
QD ?= $(NVROOT)/compilers/extras/qd
LLIBS += -L$(QD)/lib -lqdmod -lqd -Wl,-rpath,$(QD)/lib
INCS += -I$(QD)/include/qd
# BLAS (mandatory)
BLAS = -lnvpl_blas_lp64_gomp -lnvpl_blas_core
# LAPACK (mandatory)
LAPACK = -lnvpl_lapack_lp64_gomp -lnvpl_lapack_core
# scaLAPACK (mandatory)
SCALAPACK = -lscalapack
LLIBS += $(SCALAPACK) $(LAPACK) $(BLAS) -Wl,-rpath,/user-environment/env/develop/lib -Wl,-rpath,/user-environment/env/develop/lib64 -Wl,--disable-new-dtags
# FFTW (mandatory)
FFTW_ROOT ?= /user-environment/env/develop
LLIBS += -L$(FFTW_ROOT)/lib -lfftw3 -lfftw3_omp
INCS += -I$(FFTW_ROOT)/include
# Use cusolvermp (optional)
# supported as of NVHPC-SDK 24.1 (and needs CUDA-11.8)
#CPP_OPTIONS+= -DCUSOLVERMP -DCUBLASMP
#LLIBS += -cudalib=cusolvermp,cublasmp -lnvhpcwrapcal
# HDF5-support (optional but strongly recommended)
CPP_OPTIONS+= -DVASP_HDF5
HDF5_ROOT ?= /user-environment/env/develop
LLIBS += -L$(HDF5_ROOT)/lib -lhdf5_fortran
INCS += -I$(HDF5_ROOT)/include
# For the VASP-2-Wannier90 interface (optional)
CPP_OPTIONS += -DVASP2WANNIER90
WANNIER90_ROOT ?= /user-environment/env/develop
LLIBS += -L$(WANNIER90_ROOT)/lib -lwannier
# For the fftlib library (recommended)
#CPP_OPTIONS+= -Dsysv
#FCL += fftlib.o
#CXX_FFTLIB = nvc++ -mp --no_warnings -std=c++11 -DFFTLIB_THREADSAFE
#INCS_FFTLIB = -I./include -I$(FFTW_ROOT)/include
#LIBS += fftlib
#LLIBS += -ldl
```
??? note "Makefile for v6.4.3"
```make
# Default precompiler options
CPP_OPTIONS = -DHOST="LinuxNV"
-DMPI -DMPI_INPLACE -DMPI_BLOCK=8000 -Duse_collective
-DscaLAPACK
-DCACHE_SIZE=4000
-Davoidalloc
-Dvasp6
-Duse_bse_te
-Dtbdyn
-Dqd_emulate
-Dfock_dblbuf
-D_OPENMP
-D_OPENACC
-DUSENCCL -DUSENCCLP2P
CPP = nvfortran -Mpreprocess -Mfree -Mextend -E $(CPP_OPTIONS) $*$(FUFFIX) > $*$(SUFFIX)
CUDA_VERSION = $(shell nvcc -V | grep -E -o -m 1 "[0-9][0-9]\.[0-9]," | rev | cut -c 2- | rev)
CC = mpicc -acc -gpu=cc90,cuda${CUDA_VERSION} -mp
FC = mpif90 -acc -gpu=cc90,cuda${CUDA_VERSION} -mp
FCL = mpif90 -acc -gpu=cc90,cuda${CUDA_VERSION} -mp -c++libs
FREE = -Mfree
FFLAGS = -Mbackslash -Mlarge_arrays
OFLAG = -fast
DEBUG = -Mfree -O0 -traceback
OBJECTS = fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o
LLIBS = -cudalib=cublas,cusolver,cufft,nccl -cuda
# Redefine the standard list of O1 and O2 objects
SOURCE_O1 := pade_fit.o minimax_dependence.o
SOURCE_O2 := pead.o
# For what used to be vasp.5.lib
CPP_LIB = $(CPP)
FC_LIB = $(FC)
CC_LIB = $(CC)
CFLAGS_LIB = -O -w
FFLAGS_LIB = -O1 -Mfixed
FREE_LIB = $(FREE)
OBJECTS_LIB = linpack_double.o
# For the parser library
CXX_PARS = nvc++ --no_warnings
##
## Customize as of this point! Of course you may change the preceding
## part of this file as well if you like, but it should rarely be
## necessary ...
##
# When compiling on the target machine itself , change this to the
# relevant target when cross-compiling for another architecture
#
# NOTE: Using "-tp neoverse-v2" causes some tests to fail. On GH200 architecture, "-tp host"
# is recommended.
VASP_TARGET_CPU ?= -tp host
FFLAGS += $(VASP_TARGET_CPU)
# Specify your NV HPC-SDK installation (mandatory)
#... first try to set it automatically
NVROOT =$(shell which nvfortran | awk -F /compilers/bin/nvfortran '{ print $$1 }')
# If the above fails, then NVROOT needs to be set manually
#NVHPC ?= /opt/nvidia/hpc_sdk
#NVVERSION = 21.11
#NVROOT = $(NVHPC)/Linux_x86_64/$(NVVERSION)
## Improves performance when using NV HPC-SDK >=21.11 and CUDA >11.2
#OFLAG_IN = -fast -Mwarperf
#SOURCE_IN := nonlr.o
# Software emulation of quadruple precsion (mandatory)
QD ?= $(NVROOT)/compilers/extras/qd
LLIBS += -L$(QD)/lib -lqdmod -lqd -Wl,-rpath,$(QD)/lib
INCS += -I$(QD)/include/qd
# BLAS (mandatory)
BLAS = -lnvpl_blas_lp64_gomp -lnvpl_blas_core
# LAPACK (mandatory)
LAPACK = -lnvpl_lapack_lp64_gomp -lnvpl_lapack_core
# scaLAPACK (mandatory)
SCALAPACK = -lscalapack
LLIBS += $(SCALAPACK) $(LAPACK) $(BLAS) -Wl,-rpath,/user-environment/env/develop/lib -Wl,-rpath,/user-environment/env/develop/lib64 -Wl,--disable-new-dtags
# FFTW (mandatory)
FFTW_ROOT ?= /user-environment/env/develop
LLIBS += -L$(FFTW_ROOT)/lib -lfftw3 -lfftw3_omp
INCS += -I$(FFTW_ROOT)/include
# Use cusolvermp (optional)
# supported as of NVHPC-SDK 24.1 (and needs CUDA-11.8)
#CPP_OPTIONS+= -DCUSOLVERMP -DCUBLASMP
#LLIBS += -cudalib=cusolvermp,cublasmp -lnvhpcwrapcal
# HDF5-support (optional but strongly recommended)
CPP_OPTIONS+= -DVASP_HDF5
HDF5_ROOT ?= /user-environment/env/develop
LLIBS += -L$(HDF5_ROOT)/lib -lhdf5_fortran
INCS += -I$(HDF5_ROOT)/include
# For the VASP-2-Wannier90 interface (optional)
CPP_OPTIONS += -DVASP2WANNIER90
WANNIER90_ROOT ?= /user-environment/env/develop
LLIBS += -L$(WANNIER90_ROOT)/lib -lwannier
# For the fftlib library (recommended)
#CPP_OPTIONS+= -Dsysv
#FCL += fftlib.o
#CXX_FFTLIB = nvc++ -mp --no_warnings -std=c++11 -DFFTLIB_THREADSAFE
#INCS_FFTLIB = -I./include -I$(FFTW_ROOT)/include
#LIBS += fftlib
#LLIBS += -ldl
```