|
| 1 | +/* |
| 2 | + * Replacement for the ROM aes_unwrap() function. It uses the heap instead of |
| 3 | + * the static DRAM address at 0x3FFFEA80, which may step on the SYS stack in |
| 4 | + * special circumstances such as HWDT Stack Dump. |
| 5 | + * |
| 6 | + * When not using WPS, the address space 0x3FFFE000 up to 0x40000000 is mostly |
| 7 | + * available for the stacks. The one known exception is the ROM AES APIs. When |
| 8 | + * `aes_decrypt_init` is called, it uses memory at 0x3FFFEA80 up to 0x3FFFEB30 |
| 9 | + * for a buffer. At the finish, `aes_decrypt_deinit` zeros out the buffer. |
| 10 | + * |
| 11 | + * The NONOS SDK appears to have replacements for most of the ROM's AES APIs. |
| 12 | + * However, the SDK still calls on the ROM's aes_unwrap function, which uses |
| 13 | + * the ROM's AES APIs to operate. These calls can overwrite some of the stack |
| 14 | + * space. To resolve the problem, this module replaces `aes_unwrap`. |
| 15 | + * |
| 16 | + * Final note, so far, I have not seen a problem when using the extra 4K heap |
| 17 | + * option without the "debug HWDT". It is when combined with the HWDT Stack |
| 18 | + * Dump that a problem shows. This combination adds a Boot ROM stack, which |
| 19 | + * pushes up the SYS and CONT stacks into the AES Buffer space. Then the |
| 20 | + * problem shows. |
| 21 | + * |
| 22 | + * While debugging with painted stack space, during WiFi Connect, Reconnect, |
| 23 | + * and about every hour, a block of memory 0x3FFFEA80 - 0x3FFFEB30 (176 bytes) |
| 24 | + * was zeroed by the Boot ROM function aes_decrypt_init. All other painted |
| 25 | + * memory in the area was untouched after starting WiFi. |
| 26 | + */ |
| 27 | + |
| 28 | +#if defined(KEEP_ROM_AES_UNWRAP) |
| 29 | +// Using the ROM version of aes_unwrap should be fine for the no extra 4K case |
| 30 | +// which is usually used in conjunction with WPS. |
| 31 | + |
| 32 | +#else |
| 33 | +// This is required for DEBUG_ESP_HWDT. |
| 34 | +// The need is unconfirmed for the extra 4K heap case. |
| 35 | +#include "umm_malloc/umm_malloc.h" |
| 36 | + |
| 37 | +extern "C" { |
| 38 | + |
| 39 | +// Uses this function from the Boot ROM |
| 40 | +void rijndaelKeySetupDec(u32 rk[], const u8 cipherKey[]); |
| 41 | + |
| 42 | +// This replaces the Boot ROM version just for this module |
| 43 | +// Uses a malloc-ed buffer instead of the static buffer in stack address space. |
| 44 | +static void *aes_decrypt_init(const u8 *key, size_t len) { |
| 45 | + if (16u != len) { |
| 46 | + return 0; |
| 47 | + } |
| 48 | + u32 *rk = (u32 *)malloc(16*11); |
| 49 | + // u32 *rk = (u32 *)0x3FFFEA80u; // This is what the ROM would have used. |
| 50 | + if (rk) { |
| 51 | + rijndaelKeySetupDec(rk, key); |
| 52 | + } |
| 53 | + return (void *)rk; |
| 54 | +} |
| 55 | + |
| 56 | +// This replaces the Boot ROM version just for this module |
| 57 | +static void aes_decrypt_deinit(void *ctx) { |
| 58 | + if (ctx) { |
| 59 | + ets_memset(ctx, 0, 16*11); |
| 60 | + free(ctx); |
| 61 | + } |
| 62 | + return; |
| 63 | +} |
| 64 | + |
| 65 | +/* |
| 66 | + * The NONOS SDK has an override on this function. To replace the aes_unwrap |
| 67 | + * without changing its behavior too much. We need access to the ROM version of |
| 68 | + * the AES APIs to make our aes_unwrap functionally equal to the current |
| 69 | + * environment except for the AES Buffer. |
| 70 | + */ |
| 71 | +#ifndef ROM_aes_decrypt |
| 72 | +#define ROM_aes_decrypt 0x400092d4 |
| 73 | +#endif |
| 74 | + |
| 75 | +typedef void (*fp_aes_decrypt_t)(void *ctx, const u8 *crypt, u8 *plain); |
| 76 | +#define AES_DECRYPT (reinterpret_cast<fp_aes_decrypt_t>(ROM_aes_decrypt)) |
| 77 | + |
| 78 | +/////////////////////////////////////////////////////////////////////////////// |
| 79 | +/////////////////////////////////////////////////////////////////////////////// |
| 80 | +/////////////////////////////////////////////////////////////////////////////// |
| 81 | +/* |
| 82 | + * This aes_unwrap() function overrides/replaces the Boot ROM version. |
| 83 | + * |
| 84 | + * It was adapted from aes_unwrap() found in the ESP8266 RTOS SDK |
| 85 | + * .../components/wap_supplicant/src/crypto/aes-unwrap.c |
| 86 | + * |
| 87 | + */ |
| 88 | +/////////////////////////////////////////////////////////////////////////////// |
| 89 | +/* |
| 90 | + * AES key unwrap (128-bit KEK, RFC3394) |
| 91 | + * |
| 92 | + * Copyright (c) 2003-2007, Jouni Malinen <[email protected]> |
| 93 | + * |
| 94 | + * This program is free software; you can redistribute it and/or modify |
| 95 | + * it under the terms of the GNU General Public License version 2 as |
| 96 | + * published by the Free Software Foundation. |
| 97 | + * |
| 98 | + * Alternatively, this software may be distributed under the terms of BSD |
| 99 | + * license. |
| 100 | + * |
| 101 | + * See README and COPYING for more details. |
| 102 | + */ |
| 103 | + |
| 104 | +/** based on RTOS SDK |
| 105 | + * aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394) |
| 106 | + * @kek: Key encryption key (KEK) |
| 107 | + * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16 |
| 108 | + * bytes |
| 109 | + * @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bits |
| 110 | + * @plain: Plaintext key, n * 64 bits |
| 111 | + * Returns: 0 on success, -1 on failure (e.g., integrity verification failed) |
| 112 | + */ |
| 113 | +int aes_unwrap(const u8 *kek, int n, const u8 *cipher, u8 *plain) |
| 114 | +{ |
| 115 | + u8 a[8], *r, b[16]; |
| 116 | + int i, j; |
| 117 | + void *ctx; |
| 118 | + |
| 119 | + /* 1) Initialize variables. */ |
| 120 | + ets_memcpy(a, cipher, 8); |
| 121 | + r = plain; |
| 122 | + ets_memcpy(r, cipher + 8, 8 * n); |
| 123 | + |
| 124 | + ctx = aes_decrypt_init(kek, 16); |
| 125 | + if (ctx == NULL) |
| 126 | + return -1; |
| 127 | + |
| 128 | + /* 2) Compute intermediate values. |
| 129 | + * For j = 5 to 0 |
| 130 | + * For i = n to 1 |
| 131 | + * B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i |
| 132 | + * A = MSB(64, B) |
| 133 | + * R[i] = LSB(64, B) |
| 134 | + */ |
| 135 | + for (j = 5; j >= 0; j--) { |
| 136 | + r = plain + (n - 1) * 8; |
| 137 | + for (i = n; i >= 1; i--) { |
| 138 | + ets_memcpy(b, a, 8); |
| 139 | + b[7] ^= n * j + i; |
| 140 | + |
| 141 | + ets_memcpy(b + 8, r, 8); |
| 142 | + AES_DECRYPT(ctx, b, b); |
| 143 | + ets_memcpy(a, b, 8); |
| 144 | + ets_memcpy(r, b + 8, 8); |
| 145 | + r -= 8; |
| 146 | + } |
| 147 | + } |
| 148 | + aes_decrypt_deinit(ctx); |
| 149 | + |
| 150 | + /* 3) Output results. |
| 151 | + * |
| 152 | + * These are already in @plain due to the location of temporary |
| 153 | + * variables. Just verify that the IV matches with the expected value. |
| 154 | + */ |
| 155 | + for (i = 0; i < 8; i++) { |
| 156 | + if (a[i] != 0xa6) |
| 157 | + return -1; |
| 158 | + } |
| 159 | + |
| 160 | + return 0; |
| 161 | +} |
| 162 | +}; |
| 163 | +#endif |
0 commit comments