forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcat.py
888 lines (749 loc) · 27.6 KB
/
concat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
"""
Concat routines.
"""
from __future__ import annotations
from collections import abc
from typing import (
TYPE_CHECKING,
Callable,
Literal,
cast,
overload,
)
import warnings
import numpy as np
from pandas._libs import lib
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import is_bool
from pandas.core.dtypes.concat import concat_compat
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
from pandas.core.dtypes.missing import isna
from pandas.core.arrays.categorical import (
factorize_from_iterable,
factorize_from_iterables,
)
import pandas.core.common as com
from pandas.core.indexes.api import (
Index,
MultiIndex,
all_indexes_same,
default_index,
ensure_index,
get_objs_combined_axis,
get_unanimous_names,
)
from pandas.core.internals import concatenate_managers
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Iterable,
Mapping,
)
from pandas._typing import (
Axis,
AxisInt,
HashableT,
)
from pandas import (
DataFrame,
Series,
)
# ---------------------------------------------------------------------
# Concatenate DataFrame objects
@overload
def concat(
objs: Iterable[DataFrame] | Mapping[HashableT, DataFrame],
*,
axis: Literal[0, "index"] = ...,
join: str = ...,
ignore_index: bool = ...,
keys: Iterable[Hashable] | None = ...,
levels=...,
names: list[HashableT] | None = ...,
verify_integrity: bool = ...,
sort: bool = ...,
copy: bool | lib.NoDefault = ...,
) -> DataFrame: ...
@overload
def concat(
objs: Iterable[Series] | Mapping[HashableT, Series],
*,
axis: Literal[0, "index"] = ...,
join: str = ...,
ignore_index: bool = ...,
keys: Iterable[Hashable] | None = ...,
levels=...,
names: list[HashableT] | None = ...,
verify_integrity: bool = ...,
sort: bool = ...,
copy: bool | lib.NoDefault = ...,
) -> Series: ...
@overload
def concat(
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
*,
axis: Literal[0, "index"] = ...,
join: str = ...,
ignore_index: bool = ...,
keys: Iterable[Hashable] | None = ...,
levels=...,
names: list[HashableT] | None = ...,
verify_integrity: bool = ...,
sort: bool = ...,
copy: bool | lib.NoDefault = ...,
) -> DataFrame | Series: ...
@overload
def concat(
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
*,
axis: Literal[1, "columns"],
join: str = ...,
ignore_index: bool = ...,
keys: Iterable[Hashable] | None = ...,
levels=...,
names: list[HashableT] | None = ...,
verify_integrity: bool = ...,
sort: bool = ...,
copy: bool | lib.NoDefault = ...,
) -> DataFrame: ...
@overload
def concat(
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
*,
axis: Axis = ...,
join: str = ...,
ignore_index: bool = ...,
keys: Iterable[Hashable] | None = ...,
levels=...,
names: list[HashableT] | None = ...,
verify_integrity: bool = ...,
sort: bool = ...,
copy: bool | lib.NoDefault = ...,
) -> DataFrame | Series: ...
def concat(
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
*,
axis: Axis = 0,
join: str = "outer",
ignore_index: bool = False,
keys: Iterable[Hashable] | None = None,
levels=None,
names: list[HashableT] | None = None,
verify_integrity: bool = False,
sort: bool = False,
copy: bool | lib.NoDefault = lib.no_default,
) -> DataFrame | Series:
"""
Concatenate pandas objects along a particular axis.
Allows optional set logic along the other axes.
Can also add a layer of hierarchical indexing on the concatenation axis,
which may be useful if the labels are the same (or overlapping) on
the passed axis number.
Parameters
----------
objs : an iterable or mapping of Series or DataFrame objects
If a mapping is passed, the keys will be used as the `keys`
argument, unless it is passed, in which case the values will be
selected (see below). Any None objects will be dropped silently unless
they are all None in which case a ValueError will be raised.
axis : {0/'index', 1/'columns'}, default 0
The axis to concatenate along.
join : {'inner', 'outer'}, default 'outer'
How to handle indexes on other axis (or axes).
ignore_index : bool, default False
If True, do not use the index values along the concatenation axis. The
resulting axis will be labeled 0, ..., n - 1. This is useful if you are
concatenating objects where the concatenation axis does not have
meaningful indexing information. Note the index values on the other
axes are still respected in the join.
keys : sequence, default None
If multiple levels passed, should contain tuples. Construct
hierarchical index using the passed keys as the outermost level.
levels : list of sequences, default None
Specific levels (unique values) to use for constructing a
MultiIndex. Otherwise they will be inferred from the keys.
names : list, default None
Names for the levels in the resulting hierarchical index.
verify_integrity : bool, default False
Check whether the new concatenated axis contains duplicates. This can
be very expensive relative to the actual data concatenation.
sort : bool, default False
Sort non-concatenation axis. One exception to this is when the
non-concatentation axis is a DatetimeIndex and join='outer' and the axis is
not already aligned. In that case, the non-concatenation axis is always
sorted lexicographically.
copy : bool, default False
If False, do not copy data unnecessarily.
.. note::
The `copy` keyword will change behavior in pandas 3.0.
`Copy-on-Write
<https://pandas.pydata.org/docs/dev/user_guide/copy_on_write.html>`__
will be enabled by default, which means that all methods with a
`copy` keyword will use a lazy copy mechanism to defer the copy and
ignore the `copy` keyword. The `copy` keyword will be removed in a
future version of pandas.
You can already get the future behavior and improvements through
enabling copy on write ``pd.options.mode.copy_on_write = True``
.. deprecated:: 3.0.0
Returns
-------
object, type of objs
When concatenating all ``Series`` along the index (axis=0), a
``Series`` is returned. When ``objs`` contains at least one
``DataFrame``, a ``DataFrame`` is returned. When concatenating along
the columns (axis=1), a ``DataFrame`` is returned.
See Also
--------
DataFrame.join : Join DataFrames using indexes.
DataFrame.merge : Merge DataFrames by indexes or columns.
Notes
-----
The keys, levels, and names arguments are all optional.
A walkthrough of how this method fits in with other tools for combining
pandas objects can be found `here
<https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html>`__.
It is not recommended to build DataFrames by adding single rows in a
for loop. Build a list of rows and make a DataFrame in a single concat.
Examples
--------
Combine two ``Series``.
>>> s1 = pd.Series(["a", "b"])
>>> s2 = pd.Series(["c", "d"])
>>> pd.concat([s1, s2])
0 a
1 b
0 c
1 d
dtype: object
Clear the existing index and reset it in the result
by setting the ``ignore_index`` option to ``True``.
>>> pd.concat([s1, s2], ignore_index=True)
0 a
1 b
2 c
3 d
dtype: object
Add a hierarchical index at the outermost level of
the data with the ``keys`` option.
>>> pd.concat([s1, s2], keys=["s1", "s2"])
s1 0 a
1 b
s2 0 c
1 d
dtype: object
Label the index keys you create with the ``names`` option.
>>> pd.concat([s1, s2], keys=["s1", "s2"], names=["Series name", "Row ID"])
Series name Row ID
s1 0 a
1 b
s2 0 c
1 d
dtype: object
Combine two ``DataFrame`` objects with identical columns.
>>> df1 = pd.DataFrame([["a", 1], ["b", 2]], columns=["letter", "number"])
>>> df1
letter number
0 a 1
1 b 2
>>> df2 = pd.DataFrame([["c", 3], ["d", 4]], columns=["letter", "number"])
>>> df2
letter number
0 c 3
1 d 4
>>> pd.concat([df1, df2])
letter number
0 a 1
1 b 2
0 c 3
1 d 4
Combine ``DataFrame`` objects with overlapping columns
and return everything. Columns outside the intersection will
be filled with ``NaN`` values.
>>> df3 = pd.DataFrame(
... [["c", 3, "cat"], ["d", 4, "dog"]], columns=["letter", "number", "animal"]
... )
>>> df3
letter number animal
0 c 3 cat
1 d 4 dog
>>> pd.concat([df1, df3], sort=False)
letter number animal
0 a 1 NaN
1 b 2 NaN
0 c 3 cat
1 d 4 dog
Combine ``DataFrame`` objects with overlapping columns
and return only those that are shared by passing ``inner`` to
the ``join`` keyword argument.
>>> pd.concat([df1, df3], join="inner")
letter number
0 a 1
1 b 2
0 c 3
1 d 4
Combine ``DataFrame`` objects horizontally along the x axis by
passing in ``axis=1``.
>>> df4 = pd.DataFrame(
... [["bird", "polly"], ["monkey", "george"]], columns=["animal", "name"]
... )
>>> pd.concat([df1, df4], axis=1)
letter number animal name
0 a 1 bird polly
1 b 2 monkey george
Prevent the result from including duplicate index values with the
``verify_integrity`` option.
>>> df5 = pd.DataFrame([1], index=["a"])
>>> df5
0
a 1
>>> df6 = pd.DataFrame([2], index=["a"])
>>> df6
0
a 2
>>> pd.concat([df5, df6], verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: ['a']
Append a single row to the end of a ``DataFrame`` object.
>>> df7 = pd.DataFrame({"a": 1, "b": 2}, index=[0])
>>> df7
a b
0 1 2
>>> new_row = pd.Series({"a": 3, "b": 4})
>>> new_row
a 3
b 4
dtype: int64
>>> pd.concat([df7, new_row.to_frame().T], ignore_index=True)
a b
0 1 2
1 3 4
"""
if copy is not lib.no_default:
warnings.warn(
"The copy keyword is deprecated and will be removed in a future "
"version. Copy-on-Write is active in pandas since 3.0 which utilizes "
"a lazy copy mechanism that defers copies until necessary. Use "
".copy() to make an eager copy if necessary.",
DeprecationWarning,
stacklevel=find_stack_level(),
)
op = _Concatenator(
objs,
axis=axis,
ignore_index=ignore_index,
join=join,
keys=keys,
levels=levels,
names=names,
verify_integrity=verify_integrity,
sort=sort,
)
return op.get_result()
class _Concatenator:
"""
Orchestrates a concatenation operation for BlockManagers
"""
sort: bool
def __init__(
self,
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
axis: Axis = 0,
join: str = "outer",
keys: Iterable[Hashable] | None = None,
levels=None,
names: list[HashableT] | None = None,
ignore_index: bool = False,
verify_integrity: bool = False,
sort: bool = False,
) -> None:
if isinstance(objs, (ABCSeries, ABCDataFrame, str)):
raise TypeError(
"first argument must be an iterable of pandas "
f'objects, you passed an object of type "{type(objs).__name__}"'
)
if join == "outer":
self.intersect = False
elif join == "inner":
self.intersect = True
else: # pragma: no cover
raise ValueError(
"Only can inner (intersect) or outer (union) join the other axis"
)
if not is_bool(sort):
raise ValueError(
f"The 'sort' keyword only accepts boolean values; {sort} was passed."
)
# Incompatible types in assignment (expression has type "Union[bool, bool_]",
# variable has type "bool")
self.sort = sort # type: ignore[assignment]
self.ignore_index = ignore_index
self.verify_integrity = verify_integrity
objs, keys, ndims = _clean_keys_and_objs(objs, keys)
# select an object to be our result reference
sample, objs = _get_sample_object(
objs, ndims, keys, names, levels, self.intersect
)
# Standardize axis parameter to int
if sample.ndim == 1:
from pandas import DataFrame
axis = DataFrame._get_axis_number(axis)
self._is_frame = False
self._is_series = True
else:
axis = sample._get_axis_number(axis)
self._is_frame = True
self._is_series = False
# Need to flip BlockManager axis in the DataFrame special case
axis = sample._get_block_manager_axis(axis)
# if we have mixed ndims, then convert to highest ndim
# creating column numbers as needed
if len(ndims) > 1:
objs = self._sanitize_mixed_ndim(objs, sample, ignore_index, axis)
self.objs = objs
# note: this is the BlockManager axis (since DataFrame is transposed)
self.bm_axis = axis
self.axis = 1 - self.bm_axis if self._is_frame else 0
self.keys = keys
self.names = names or getattr(keys, "names", None)
self.levels = levels
def _sanitize_mixed_ndim(
self,
objs: list[Series | DataFrame],
sample: Series | DataFrame,
ignore_index: bool,
axis: AxisInt,
) -> list[Series | DataFrame]:
# if we have mixed ndims, then convert to highest ndim
# creating column numbers as needed
new_objs = []
current_column = 0
max_ndim = sample.ndim
for obj in objs:
ndim = obj.ndim
if ndim == max_ndim:
pass
elif ndim != max_ndim - 1:
raise ValueError(
"cannot concatenate unaligned mixed dimensional NDFrame objects"
)
else:
name = getattr(obj, "name", None)
if ignore_index or name is None:
if axis == 1:
# doing a row-wise concatenation so need everything
# to line up
name = 0
else:
# doing a column-wise concatenation so need series
# to have unique names
name = current_column
current_column += 1
obj = sample._constructor(obj, copy=False)
if isinstance(obj, ABCDataFrame):
obj.columns = range(name, name + 1, 1)
else:
obj = sample._constructor({name: obj}, copy=False)
new_objs.append(obj)
return new_objs
def get_result(self):
cons: Callable[..., DataFrame | Series]
sample: DataFrame | Series
# series only
if self._is_series:
sample = cast("Series", self.objs[0])
# stack blocks
if self.bm_axis == 0:
name = com.consensus_name_attr(self.objs)
cons = sample._constructor
arrs = [ser._values for ser in self.objs]
res = concat_compat(arrs, axis=0)
new_index: Index
if self.ignore_index:
# We can avoid surprisingly-expensive _get_concat_axis
new_index = default_index(len(res))
else:
new_index = self.new_axes[0]
mgr = type(sample._mgr).from_array(res, index=new_index)
result = sample._constructor_from_mgr(mgr, axes=mgr.axes)
result._name = name
return result.__finalize__(self, method="concat")
# combine as columns in a frame
else:
data = dict(zip(range(len(self.objs)), self.objs))
# GH28330 Preserves subclassed objects through concat
cons = sample._constructor_expanddim
index, columns = self.new_axes
df = cons(data, index=index, copy=False)
df.columns = columns
return df.__finalize__(self, method="concat")
# combine block managers
else:
sample = cast("DataFrame", self.objs[0])
mgrs_indexers = []
for obj in self.objs:
indexers = {}
for ax, new_labels in enumerate(self.new_axes):
# ::-1 to convert BlockManager ax to DataFrame ax
if ax == self.bm_axis:
# Suppress reindexing on concat axis
continue
# 1-ax to convert BlockManager axis to DataFrame axis
obj_labels = obj.axes[1 - ax]
if not new_labels.equals(obj_labels):
indexers[ax] = obj_labels.get_indexer(new_labels)
mgrs_indexers.append((obj._mgr, indexers))
new_data = concatenate_managers(
mgrs_indexers, self.new_axes, concat_axis=self.bm_axis, copy=False
)
out = sample._constructor_from_mgr(new_data, axes=new_data.axes)
return out.__finalize__(self, method="concat")
@cache_readonly
def new_axes(self) -> list[Index]:
if self._is_series and self.bm_axis == 1:
ndim = 2
else:
ndim = self.objs[0].ndim
return [
self._get_concat_axis
if i == self.bm_axis
else get_objs_combined_axis(
self.objs,
axis=self.objs[0]._get_block_manager_axis(i),
intersect=self.intersect,
sort=self.sort,
)
for i in range(ndim)
]
@cache_readonly
def _get_concat_axis(self) -> Index:
"""
Return index to be used along concatenation axis.
"""
if self._is_series:
if self.bm_axis == 0:
indexes = [x.index for x in self.objs]
elif self.ignore_index:
idx = default_index(len(self.objs))
return idx
elif self.keys is None:
names: list[Hashable] = [None] * len(self.objs)
num = 0
has_names = False
for i, x in enumerate(self.objs):
if x.ndim != 1:
raise TypeError(
f"Cannot concatenate type 'Series' with "
f"object of type '{type(x).__name__}'"
)
if x.name is not None:
names[i] = x.name
has_names = True
else:
names[i] = num
num += 1
if has_names:
return Index(names)
else:
return default_index(len(self.objs))
else:
return ensure_index(self.keys).set_names(self.names)
else:
indexes = [x.axes[self.axis] for x in self.objs]
if self.ignore_index:
idx = default_index(sum(len(i) for i in indexes))
return idx
if self.keys is None:
if self.levels is not None:
raise ValueError("levels supported only when keys is not None")
concat_axis = _concat_indexes(indexes)
else:
concat_axis = _make_concat_multiindex(
indexes, self.keys, self.levels, self.names
)
if self.verify_integrity:
if not concat_axis.is_unique:
overlap = concat_axis[concat_axis.duplicated()].unique()
raise ValueError(f"Indexes have overlapping values: {overlap}")
return concat_axis
def _clean_keys_and_objs(
objs: Iterable[Series | DataFrame] | Mapping[HashableT, Series | DataFrame],
keys,
) -> tuple[list[Series | DataFrame], Index | None, set[int]]:
"""
Returns
-------
clean_objs : list[Series | DataFrame]
LIst of DataFrame and Series with Nones removed.
keys : Index | None
None if keys was None
Index if objs was a Mapping or keys was not None. Filtered where objs was None.
ndim : set[int]
Unique .ndim attribute of obj encountered.
"""
if isinstance(objs, abc.Mapping):
if keys is None:
keys = objs.keys()
objs_list = [objs[k] for k in keys]
else:
objs_list = list(objs)
if len(objs_list) == 0:
raise ValueError("No objects to concatenate")
if keys is not None:
if not isinstance(keys, Index):
keys = Index(keys)
if len(keys) != len(objs_list):
# GH#43485
raise ValueError(
f"The length of the keys ({len(keys)}) must match "
f"the length of the objects to concatenate ({len(objs_list)})"
)
# GH#1649
key_indices = []
clean_objs = []
ndims = set()
for i, obj in enumerate(objs_list):
if obj is None:
continue
elif isinstance(obj, (ABCSeries, ABCDataFrame)):
key_indices.append(i)
clean_objs.append(obj)
ndims.add(obj.ndim)
else:
msg = (
f"cannot concatenate object of type '{type(obj)}'; "
"only Series and DataFrame objs are valid"
)
raise TypeError(msg)
if keys is not None and len(key_indices) < len(keys):
keys = keys.take(key_indices)
if len(clean_objs) == 0:
raise ValueError("All objects passed were None")
return clean_objs, keys, ndims
def _get_sample_object(
objs: list[Series | DataFrame],
ndims: set[int],
keys,
names,
levels,
intersect: bool,
) -> tuple[Series | DataFrame, list[Series | DataFrame]]:
# get the sample
# want the highest ndim that we have, and must be non-empty
# unless all objs are empty
if len(ndims) > 1:
max_ndim = max(ndims)
for obj in objs:
if obj.ndim == max_ndim and sum(obj.shape): # type: ignore[arg-type]
return obj, objs
elif keys is None and names is None and levels is None and not intersect:
# filter out the empties if we have not multi-index possibilities
# note to keep empty Series as it affect to result columns / name
if ndims.pop() == 2:
non_empties = [obj for obj in objs if sum(obj.shape)]
else:
non_empties = objs
if len(non_empties):
return non_empties[0], non_empties
return objs[0], objs
def _concat_indexes(indexes) -> Index:
return indexes[0].append(indexes[1:])
def validate_unique_levels(levels: list[Index]) -> None:
for level in levels:
if not level.is_unique:
raise ValueError(f"Level values not unique: {level.tolist()}")
def _make_concat_multiindex(indexes, keys, levels=None, names=None) -> MultiIndex:
if (levels is None and isinstance(keys[0], tuple)) or (
levels is not None and len(levels) > 1
):
zipped = list(zip(*keys))
if names is None:
names = [None] * len(zipped)
if levels is None:
_, levels = factorize_from_iterables(zipped)
else:
levels = [ensure_index(x) for x in levels]
validate_unique_levels(levels)
else:
zipped = [keys]
if names is None:
names = [None]
if levels is None:
levels = [ensure_index(keys).unique()]
else:
levels = [ensure_index(x) for x in levels]
validate_unique_levels(levels)
if not all_indexes_same(indexes):
codes_list = []
# things are potentially different sizes, so compute the exact codes
# for each level and pass those to MultiIndex.from_arrays
for hlevel, level in zip(zipped, levels):
to_concat = []
if isinstance(hlevel, Index) and hlevel.equals(level):
lens = [len(idx) for idx in indexes]
codes_list.append(np.repeat(np.arange(len(hlevel)), lens))
else:
for key, index in zip(hlevel, indexes):
# Find matching codes, include matching nan values as equal.
mask = (isna(level) & isna(key)) | (level == key)
if not mask.any():
raise ValueError(f"Key {key} not in level {level}")
i = np.nonzero(mask)[0][0]
to_concat.append(np.repeat(i, len(index)))
codes_list.append(np.concatenate(to_concat))
concat_index = _concat_indexes(indexes)
# these go at the end
if isinstance(concat_index, MultiIndex):
levels.extend(concat_index.levels)
codes_list.extend(concat_index.codes)
else:
codes, categories = factorize_from_iterable(concat_index)
levels.append(categories)
codes_list.append(codes)
if len(names) == len(levels):
names = list(names)
else:
# make sure that all of the passed indices have the same nlevels
if not len({idx.nlevels for idx in indexes}) == 1:
raise AssertionError(
"Cannot concat indices that do not have the same number of levels"
)
# also copies
names = list(names) + list(get_unanimous_names(*indexes))
return MultiIndex(
levels=levels, codes=codes_list, names=names, verify_integrity=False
)
new_index = indexes[0]
n = len(new_index)
kpieces = len(indexes)
# also copies
new_names = list(names)
new_levels = list(levels)
# construct codes
new_codes = []
# do something a bit more speedy
for hlevel, level in zip(zipped, levels):
hlevel_index = ensure_index(hlevel)
mapped = level.get_indexer(hlevel_index)
mask = mapped == -1
if mask.any():
raise ValueError(
f"Values not found in passed level: {hlevel_index[mask]!s}"
)
new_codes.append(np.repeat(mapped, n))
if isinstance(new_index, MultiIndex):
new_levels.extend(new_index.levels)
new_codes.extend([np.tile(lab, kpieces) for lab in new_index.codes])
else:
new_levels.append(new_index.unique())
single_codes = new_index.unique().get_indexer(new_index)
new_codes.append(np.tile(single_codes, kpieces))
if len(new_names) < len(new_levels):
new_names.extend(new_index.names)
return MultiIndex(
levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False
)