Skip to content

Commit dbc8eaa

Browse files
committed
Merge pull request #112 from richardwei2008/p2_chapter17/05_Intro
chapter17_part1: /170_Relevance/05_Intro.asciidoc
2 parents 7431804 + 3146123 commit dbc8eaa

File tree

1 file changed

+7
-23
lines changed

1 file changed

+7
-23
lines changed

170_Relevance/05_Intro.asciidoc

Lines changed: 7 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -1,30 +1,14 @@
11
[[controlling-relevance]]
2-
== Controlling Relevance
2+
== 控制相关度
33

4-
Databases that deal purely in structured data (such as dates, numbers, and
5-
string enums) have it easy: they((("relevance", "controlling"))) just have to check whether a document (or a
6-
row, in a relational database) matches the query.
4+
处理结构化数据(比如:时间、数字、字符串、枚举)的数据库,((("relevance", "controlling")))只需检查文档(或关系数据库里的行)是否与查询匹配。
75

8-
While Boolean yes/no matches are an essential part of full-text search, they
9-
are not enough by themselves. Instead, we also need to know how relevant each
10-
document is to the query. Full-text search engines have to not only find the
11-
matching documents, but also sort them by relevance.
6+
布尔的是/非匹配是全文搜索的基础,但不止如此,我们还要知道每个文档与查询的相关度,在全文搜索引擎中不仅需要找到匹配的文档,还需根据它们相关度的高低进行排序。
127

13-
Full-text relevance ((("similarity algorithms")))formulae, or _similarity algorithms_, combine several
14-
factors to produce a single relevance `_score` for each document. In this
15-
chapter, we examine the various moving parts and discuss how they can be
16-
controlled.
8+
全文相关的公式或 _相似算法(similarity algorithms)_ ((("similarity algorithms")))会将多个因素合并起来,为每个文档生成一个相关度评分 `_score` 。本章中,我们会验证各种可变部分,然后讨论如何来控制它们。
179

18-
Of course, relevance is not just about full-text queries; it may need to
19-
take structured data into account as well. Perhaps we are looking for a
20-
vacation home with particular features (air-conditioning, sea view, free
21-
WiFi). The more features that a property has, the more relevant it is. Or
22-
perhaps we want to factor in sliding scales like recency, price, popularity, or
23-
distance, while still taking the relevance of a full-text query into account.
10+
当然,相关度不只与全文查询有关,也需要将结构化的数据考虑其中。可能我们正在找一个度假屋,需要一些的详细特征(空调、海景、免费 WiFi ),匹配的特征越多相关度越高。可能我们还希望有一些其他的考虑因素,如回头率、价格、受欢迎度或距离,当然也同时考虑全文查询的相关度。
2411

25-
All of this is possible thanks to the powerful scoring infrastructure
26-
available in Elasticsearch.
12+
所有的这些都可以通过 Elasticsearch 强大的评分基础来实现。
2713

28-
We will start by looking at the theoretical side of how Lucene calculates
29-
relevance, and then move on to practical examples of how you can control the
30-
process.
14+
本章会先从理论上介绍 Lucene 是如何计算相关度的,然后通过实际例子说明如何控制相关度的计算过程。

0 commit comments

Comments
 (0)