forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_numpy.py
483 lines (372 loc) · 15.6 KB
/
test_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import numpy as np
import pytest
from pandas.compat.numpy import _np_version_under1p16
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
from . import base
@pytest.fixture(params=["float", "object"])
def dtype(request):
return PandasDtype(np.dtype(request.param))
@pytest.fixture
def allow_in_pandas(monkeypatch):
"""
A monkeypatch to tells pandas to let us in.
By default, passing a PandasArray to an index / series / frame
constructor will unbox that PandasArray to an ndarray, and treat
it as a non-EA column. We don't want people using EAs without
reason.
The mechanism for this is a check against ABCPandasArray
in each constructor.
But, for testing, we need to allow them in pandas. So we patch
the _typ of PandasArray, so that we evade the ABCPandasArray
check.
"""
with monkeypatch.context() as m:
m.setattr(PandasArray, "_typ", "extension")
yield
@pytest.fixture
def data(allow_in_pandas, dtype):
if dtype.numpy_dtype == "object":
return pd.Series([(i,) for i in range(100)]).array
return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
@pytest.fixture
def data_missing(allow_in_pandas, dtype):
# For NumPy <1.16, np.array([np.nan, (1,)]) raises
# ValueError: setting an array element with a sequence.
if dtype.numpy_dtype == "object":
if _np_version_under1p16:
raise pytest.skip("Skipping for NumPy <1.16")
return PandasArray(np.array([np.nan, (1,)], dtype=object))
return PandasArray(np.array([np.nan, 1.0]))
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def na_cmp():
def cmp(a, b):
return np.isnan(a) and np.isnan(b)
return cmp
@pytest.fixture
def data_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, C, A] with
A < B < C
"""
if dtype.numpy_dtype == "object":
# Use an empty tuple for first element, then remove,
# to disable np.array's shape inference.
return PandasArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
return PandasArray(np.array([1, 2, 0]))
@pytest.fixture
def data_missing_for_sorting(allow_in_pandas, dtype):
"""Length-3 array with a known sort order.
This should be three items [B, NA, A] with
A < B and NA missing.
"""
if dtype.numpy_dtype == "object":
return PandasArray(np.array([(1,), np.nan, (0,)], dtype=object))
return PandasArray(np.array([1, np.nan, 0]))
@pytest.fixture
def data_for_grouping(allow_in_pandas, dtype):
"""Data for factorization, grouping, and unique tests.
Expected to be like [B, B, NA, NA, A, A, B, C]
Where A < B < C and NA is missing
"""
if dtype.numpy_dtype == "object":
a, b, c = (1,), (2,), (3,)
else:
a, b, c = np.arange(3)
return PandasArray(
np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
)
@pytest.fixture
def skip_numpy_object(dtype):
"""
Tests for PandasArray with nested data. Users typically won't create
these objects via `pd.array`, but they can show up through `.array`
on a Series with nested data. Many of the base tests fail, as they aren't
appropriate for nested data.
This fixture allows these tests to be skipped when used as a usefixtures
marker to either an individual test or a test class.
"""
if dtype == "object":
raise pytest.skip("Skipping for object dtype.")
skip_nested = pytest.mark.usefixtures("skip_numpy_object")
class BaseNumPyTests:
pass
class TestCasting(BaseNumPyTests, base.BaseCastingTests):
@skip_nested
def test_astype_str(self, data):
# ValueError: setting an array element with a sequence
super().test_astype_str(data)
class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests):
@pytest.mark.skip(reason="We don't register our dtype")
# We don't want to register. This test should probably be split in two.
def test_from_dtype(self, data):
pass
@skip_nested
def test_array_from_scalars(self, data):
# ValueError: PandasArray must be 1-dimensional.
super().test_array_from_scalars(data)
class TestDtype(BaseNumPyTests, base.BaseDtypeTests):
@pytest.mark.skip(reason="Incorrect expected.")
# we unsurprisingly clash with a NumPy name.
def test_check_dtype(self, data):
pass
class TestGetitem(BaseNumPyTests, base.BaseGetitemTests):
@skip_nested
def test_getitem_scalar(self, data):
# AssertionError
super().test_getitem_scalar(data)
@skip_nested
def test_take_series(self, data):
# ValueError: PandasArray must be 1-dimensional.
super().test_take_series(data)
def test_loc_iloc_frame_single_dtype(self, data):
npdtype = data.dtype.numpy_dtype
if npdtype == object or npdtype == np.float64:
# GH#33125
pytest.xfail(reason="GH#33125 astype doesn't recognize data.dtype")
super().test_loc_iloc_frame_single_dtype(data)
class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests):
@skip_nested
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
# ValueError: Names should be list-like for a MultiIndex
if data_for_grouping.dtype.numpy_dtype == np.float64:
pytest.xfail(reason="GH#33125 astype doesn't recognize data.dtype")
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
class TestInterface(BaseNumPyTests, base.BaseInterfaceTests):
@skip_nested
def test_array_interface(self, data):
# NumPy array shape inference
super().test_array_interface(data)
class TestMethods(BaseNumPyTests, base.BaseMethodsTests):
@pytest.mark.skip(reason="TODO: remove?")
def test_value_counts(self, all_data, dropna):
pass
@pytest.mark.xfail(reason="not working. will be covered by #32028")
def test_value_counts_with_normalize(self, data):
return super().test_value_counts_with_normalize(data)
@pytest.mark.skip(reason="Incorrect expected")
# We have a bool dtype, so the result is an ExtensionArray
# but expected is not
def test_combine_le(self, data_repeated):
super().test_combine_le(data_repeated)
@skip_nested
def test_combine_add(self, data_repeated):
# Not numeric
super().test_combine_add(data_repeated)
@skip_nested
def test_shift_fill_value(self, data):
# np.array shape inference. Shift implementation fails.
super().test_shift_fill_value(data)
@skip_nested
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
def test_unique(self, data, box, method):
# Fails creating expected
super().test_unique(data, box, method)
@skip_nested
def test_fillna_copy_frame(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_frame(data_missing)
@skip_nested
def test_fillna_copy_series(self, data_missing):
# The "scalar" for this array isn't a scalar.
super().test_fillna_copy_series(data_missing)
@skip_nested
def test_hash_pandas_object_works(self, data, as_frame):
# ndarray of tuples not hashable
super().test_hash_pandas_object_works(data, as_frame)
@skip_nested
def test_searchsorted(self, data_for_sorting, as_series):
# Test setup fails.
super().test_searchsorted(data_for_sorting, as_series)
@skip_nested
def test_where_series(self, data, na_value, as_frame):
# Test setup fails.
super().test_where_series(data, na_value, as_frame)
@skip_nested
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
def test_repeat(self, data, repeats, as_series, use_numpy):
# Fails creating expected
super().test_repeat(data, repeats, as_series, use_numpy)
@pytest.mark.xfail(reason="PandasArray.diff may fail on dtype")
def test_diff(self, data, periods):
return super().test_diff(data, periods)
@skip_nested
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
def test_equals(self, data, na_value, as_series, box):
# Fails creating with _from_sequence
super().test_equals(data, na_value, as_series, box)
@skip_nested
class TestArithmetics(BaseNumPyTests, base.BaseArithmeticOpsTests):
divmod_exc = None
series_scalar_exc = None
frame_scalar_exc = None
series_array_exc = None
def test_divmod_series_array(self, data):
s = pd.Series(data)
self._check_divmod_op(s, divmod, data, exc=None)
@pytest.mark.skip("We implement ops")
def test_error(self, data, all_arithmetic_operators):
pass
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
super().test_arith_series_with_array(data, all_arithmetic_operators)
class TestPrinting(BaseNumPyTests, base.BasePrintingTests):
@pytest.mark.xfail(
reason="GH#33125 PandasArray.astype does not recognize PandasDtype"
)
def test_series_repr(self, data):
super().test_series_repr(data)
@skip_nested
class TestNumericReduce(BaseNumPyTests, base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
result = getattr(s, op_name)(skipna=skipna)
# avoid coercing int -> float. Just cast to the actual numpy type.
expected = getattr(s.astype(s.dtype._dtype), op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
@skip_nested
class TestBooleanReduce(BaseNumPyTests, base.BaseBooleanReduceTests):
pass
class TestMissing(BaseNumPyTests, base.BaseMissingTests):
@skip_nested
def test_fillna_scalar(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_scalar(data_missing)
@skip_nested
def test_fillna_series_method(self, data_missing, fillna_method):
# Non-scalar "scalar" values.
super().test_fillna_series_method(data_missing, fillna_method)
@skip_nested
def test_fillna_series(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_series(data_missing)
@skip_nested
def test_fillna_frame(self, data_missing):
# Non-scalar "scalar" values.
super().test_fillna_frame(data_missing)
class TestReshaping(BaseNumPyTests, base.BaseReshapingTests):
@pytest.mark.skip("Incorrect parent test")
# not actually a mixed concat, since we concat int and int.
def test_concat_mixed_dtypes(self, data):
super().test_concat_mixed_dtypes(data)
@pytest.mark.xfail(
reason="GH#33125 PandasArray.astype does not recognize PandasDtype"
)
def test_concat(self, data, in_frame):
super().test_concat(data, in_frame)
@pytest.mark.xfail(
reason="GH#33125 PandasArray.astype does not recognize PandasDtype"
)
def test_concat_all_na_block(self, data_missing, in_frame):
super().test_concat_all_na_block(data_missing, in_frame)
@skip_nested
def test_merge(self, data, na_value):
# Fails creating expected
super().test_merge(data, na_value)
@skip_nested
def test_merge_on_extension_array(self, data):
# Fails creating expected
super().test_merge_on_extension_array(data)
@skip_nested
def test_merge_on_extension_array_duplicates(self, data):
# Fails creating expected
super().test_merge_on_extension_array_duplicates(data)
@skip_nested
def test_transpose(self, data):
super().test_transpose(data)
class TestSetitem(BaseNumPyTests, base.BaseSetitemTests):
@skip_nested
def test_setitem_scalar_series(self, data, box_in_series):
# AssertionError
super().test_setitem_scalar_series(data, box_in_series)
@skip_nested
def test_setitem_sequence(self, data, box_in_series):
# ValueError: shape mismatch: value array of shape (2,1) could not
# be broadcast to indexing result of shape (2,)
super().test_setitem_sequence(data, box_in_series)
@skip_nested
def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
# ValueError: PandasArray must be 1-dimensional.
super().test_setitem_sequence_mismatched_length_raises(data, as_array)
@skip_nested
def test_setitem_sequence_broadcasts(self, data, box_in_series):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_sequence_broadcasts(data, box_in_series)
@skip_nested
def test_setitem_loc_scalar_mixed(self, data):
# AssertionError
super().test_setitem_loc_scalar_mixed(data)
@skip_nested
def test_setitem_loc_scalar_multiple_homogoneous(self, data):
# AssertionError
super().test_setitem_loc_scalar_multiple_homogoneous(data)
@skip_nested
def test_setitem_iloc_scalar_mixed(self, data):
# AssertionError
super().test_setitem_iloc_scalar_mixed(data)
@skip_nested
def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
# AssertionError
super().test_setitem_iloc_scalar_multiple_homogoneous(data)
@skip_nested
@pytest.mark.parametrize("setter", ["loc", None])
def test_setitem_mask_broadcast(self, data, setter):
# ValueError: cannot set using a list-like indexer with a different
# length than the value
super().test_setitem_mask_broadcast(data, setter)
@skip_nested
def test_setitem_scalar_key_sequence_raise(self, data):
# Failed: DID NOT RAISE <class 'ValueError'>
super().test_setitem_scalar_key_sequence_raise(data)
# TODO: there is some issue with PandasArray, therefore,
# skip the setitem test for now, and fix it later (GH 31446)
@skip_nested
@pytest.mark.parametrize(
"mask",
[
np.array([True, True, True, False, False]),
pd.array([True, True, True, False, False], dtype="boolean"),
],
ids=["numpy-array", "boolean-array"],
)
def test_setitem_mask(self, data, mask, box_in_series):
super().test_setitem_mask(data, mask, box_in_series)
@skip_nested
def test_setitem_mask_raises(self, data, box_in_series):
super().test_setitem_mask_raises(data, box_in_series)
@skip_nested
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_setitem_integer_array(self, data, idx, box_in_series):
super().test_setitem_integer_array(data, idx, box_in_series)
@skip_nested
@pytest.mark.parametrize(
"idx, box_in_series",
[
([0, 1, 2, pd.NA], False),
pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
],
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
)
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
@skip_nested
def test_setitem_slice(self, data, box_in_series):
super().test_setitem_slice(data, box_in_series)
@skip_nested
def test_setitem_loc_iloc_slice(self, data):
super().test_setitem_loc_iloc_slice(data)
@skip_nested
class TestParsing(BaseNumPyTests, base.BaseParsingTests):
pass